File size: 5,614 Bytes
5447b31
 
 
 
 
 
26763bc
 
 
 
 
5447b31
26763bc
 
 
5447b31
26763bc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
37fef8c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7682cdd
 
 
e582175
7682cdd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
# This files contains your custom actions which can be used to run
# custom Python code.
#
# See this guide on how to implement these action:
# https://rasa.com/docs/rasa/custom-actions

from typing import Any, Text, Dict, List
from rasa_sdk import Action, Tracker
from rasa_sdk.events import SlotSet, FollowupAction
from rasa_sdk.executor import CollectingDispatcher
import random

class GeneralHelp(Action):
    def name(self) -> Text:
        return "action_general_help"

    def run(self, dispatcher: CollectingDispatcher,
            tracker: Tracker,
            domain: Dict[Text, Any]) -> List[Dict[Text, Any]]:
        
        user_role = tracker.slots.get("user_role", None)
        
        if user_role is None:
            dispatcher.utter_message(text="Sure! Are you a developer or a client representing an organization?")
        else:
            return [FollowupAction("action_help_with_role")]

# Modified from @Rohit Garg's code https://github.com/rohitkg83/Omdena/blob/master/actions/actions.py
class ActionHelpWithRole(Action):

    def name(self) -> Text:
        return "action_help_with_role"

    def run(self,
            dispatcher: CollectingDispatcher,
            tracker: Tracker,
            domain: Dict[Text, Any]) -> List[Dict[Text, Any]]:

        # Get the value of the first_occurrence_user_type slot
        current_user_type = tracker.slots.get("user_role", None)
   
        if current_user_type == 'developer':
            msg = "Thanks a lot for providing the details. You can join one of our local chapter and collaborate on " \
                    "various projects and challenges to Develop Your Skills, Get Recognized, and Make an Impact. Please " \
                    "visit https://omdena.com/community for more details. Do you have any other questions? "

        elif current_user_type == 'client':
            msg = "Thanks a lot for providing the details. With us you can Innovate, Deploy and Scale " \
                    "AI Solutions in Record Time. For more details please visit https://omdena.com/offerings. Do you have any other questions? "
        else:
            msg = "Please enter either developer or client"

        dispatcher.utter_message(text=msg)

class ResetSlotsAction(Action):
    def name(self) -> Text:
        return "action_reset_slots"

    def run(self, dispatcher: CollectingDispatcher,
            tracker: Tracker,
            domain: Dict[Text, Any]) -> List[Dict[Text, Any]]:
        slots_to_reset = ["user_role"]  # Add the names of the slots you want to reset
        events = [SlotSet(slot, None) for slot in slots_to_reset]
        return events

class ActionJoinClassify(Action):

    def name(self) -> Text:
        return "action_join_classify"

    def run(self,
            dispatcher: CollectingDispatcher,
            tracker: Tracker,
            domain: Dict[Text, Any]) -> List[Dict[Text, Any]]:

        # Get the value of the latest intent 
        last_intent = tracker.slots.get("local_chapter", None)

        # Check if the last intent was 'local_chapter'
        if last_intent == 'local chapter':
            dispatcher.utter_message(template="utter_join_chapter")
        else:
            msg = "I'm sorry, I didnt understand your question, Could you please rephrase?"
            dispatcher.utter_message(text=msg)


class ActionEligibilityClassify(Action):

    def name(self) -> Text:
        return "action_eligibility_classify"

    def run(self,
            dispatcher: CollectingDispatcher,
            tracker: Tracker,
            domain: Dict[Text, Any]) -> List[Dict[Text, Any]]:

        # Get the value of the latest intent 
        last_intent = tracker.slots.get("local_chapter", None)

        # Check if the last intent was 'local_chapter'
        if last_intent == 'local chapter':
            dispatcher.utter_message(template="utter_local_chapter_participation_eligibility")
        else:
            msg = "I'm sorry, I didn't understand your question. Could you please rephrase?"
            dispatcher.utter_message(text=msg)

 
class ActionCostClassify(Action):

    def name(self) -> Text:
        return "action_cost_classify"

    def run(self,
            dispatcher: CollectingDispatcher,
            tracker: Tracker,
            domain: Dict[Text, Any]) -> List[Dict[Text, Any]]:

        # Get the value of the latest intent 
        last_intent = tracker.slots.get("local_chapter", None)

        # Check if the last intent was 'local_chapter'
        if last_intent == 'local chapter':
            dispatcher.utter_message(template="utter_local_chapter_cost")
        else:
            msg = "I'm sorry, I didn't understand your question. Could you please rephrase?"
            dispatcher.utter_message(text=msg)

class SayHelloWorld(Action):

    def name(self) -> Text:
        return "action_hello_world"

    def run(self,
            dispatcher: CollectingDispatcher,
            tracker: Tracker,
            domain: Dict[Text, Any]) -> List[Dict[Text, Any]]:

        # Use OpenAI API to generate a response
        secret_value_0 = os.environ.get("openai")
        openai.api_key = secret_value_0
        model_engine = "text-davinci-002"
        prompt_template = "Say hello world"

        response = openai.Completion.create(
            engine=model_engine,
            prompt=prompt_template,
            max_tokens=124,
            temperature=0.8,
            n=1,
            stop=None,
        )

        # Output the generated response to user
        generated_text = response.choices[0].text
        dispatcher.utter_message(text=generated_text)