Spaces:
Sleeping
Sleeping
Upload search_content.py
Browse filesUpload search_content.py to enable vector search
- actions/search_content.py +55 -0
actions/search_content.py
ADDED
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# search_content.py
|
2 |
+
|
3 |
+
import faiss
|
4 |
+
import pandas as pd
|
5 |
+
from sentence_transformers import SentenceTransformer
|
6 |
+
|
7 |
+
# Define paths for model, Faiss index, and data file
|
8 |
+
MODEL_SAVE_PATH = "all-distilroberta-v1-model.pkl"
|
9 |
+
FAISS_INDEX_FILE_PATH = "index.faiss"
|
10 |
+
DATA_FILE_PATH = "/content/omdena_faq_training_data.csv"
|
11 |
+
|
12 |
+
def load_transformer_model(model_file):
|
13 |
+
"""Load a sentence transformer model from a file."""
|
14 |
+
return SentenceTransformer.load(model_file)
|
15 |
+
|
16 |
+
def load_faiss_index(filename):
|
17 |
+
"""Load a Faiss index from a file."""
|
18 |
+
return faiss.read_index(filename)
|
19 |
+
|
20 |
+
def load_data(file_path):
|
21 |
+
"""Load data from a CSV file and preprocess it."""
|
22 |
+
data_frame = pd.read_csv(file_path)
|
23 |
+
data_frame["id"] = data_frame.index
|
24 |
+
# Create a 'QNA' column that combines 'Questions' and 'Answers'
|
25 |
+
data_frame['QNA'] = data_frame.apply(lambda row: f"Question: {row['Questions']}, Answer: {row['Answers']}", axis=1)
|
26 |
+
return data_frame.set_index(["id"], drop=False)
|
27 |
+
|
28 |
+
def search_content(query, data_frame_indexed, transformer_model, faiss_index, k=5):
|
29 |
+
"""Search the content using a query and return the top k results."""
|
30 |
+
# Encode the query using the model
|
31 |
+
query_vector = transformer_model.encode([query])
|
32 |
+
# Normalize the query vector
|
33 |
+
faiss.normalize_L2(query_vector)
|
34 |
+
# Search the Faiss index using the query vector
|
35 |
+
top_k = faiss_index.search(query_vector, k)
|
36 |
+
# Extract the IDs and similarities of the top k results
|
37 |
+
ids = top_k[1][0].tolist()
|
38 |
+
similarities = top_k[0][0].tolist()
|
39 |
+
# Get the corresponding results from the data frame
|
40 |
+
results = data_frame_indexed.loc[ids]
|
41 |
+
# Add a column for the similarities
|
42 |
+
results["similarities"] = similarities
|
43 |
+
return results
|
44 |
+
|
45 |
+
def main_search(query):
|
46 |
+
"""Main function to execute the search."""
|
47 |
+
transformer_model = load_transformer_model(MODEL_SAVE_PATH)
|
48 |
+
faiss_index = load_faiss_index(FAISS_INDEX_FILE_PATH)
|
49 |
+
data_frame_indexed = load_data(DATA_FILE_PATH)
|
50 |
+
results = search_content(query, data_frame_indexed, transformer_model, faiss_index)
|
51 |
+
return results['QNA'] # return the results
|
52 |
+
|
53 |
+
if __name__ == "__main__":
|
54 |
+
query = "school courses"
|
55 |
+
print(main_search(query)) # print the results if this script is run directly
|