# This files contains your custom actions which can be used to run # custom Python code. # # See this guide on how to implement these action: # https://rasa.com/docs/rasa/custom-actions from typing import Any, Text, Dict, List from rasa_sdk import Action, Tracker from rasa_sdk.events import SlotSet, FollowupAction from rasa_sdk.executor import CollectingDispatcher import random import os import openai class GeneralHelp(Action): def name(self) -> Text: return "action_general_help" def run(self, dispatcher: CollectingDispatcher, tracker: Tracker, domain: Dict[Text, Any]) -> List[Dict[Text, Any]]: user_role = tracker.slots.get("user_role", None) if user_role is None: dispatcher.utter_message(text="Sure! Are you a developer or a client representing an organization?") else: return [FollowupAction("action_help_with_role")] # Modified from @Rohit Garg's code https://github.com/rohitkg83/Omdena/blob/master/actions/actions.py class ActionHelpWithRole(Action): def name(self) -> Text: return "action_help_with_role" def run(self, dispatcher: CollectingDispatcher, tracker: Tracker, domain: Dict[Text, Any]) -> List[Dict[Text, Any]]: # Get the value of the first_occurrence_user_type slot current_user_type = tracker.slots.get("user_role", None) if current_user_type == 'developer': msg = "Thanks a lot for providing the details. You can join one of our local chapter and collaborate on " \ "various projects and challenges to Develop Your Skills, Get Recognized, and Make an Impact. Please " \ "visit https://omdena.com/community for more details. Do you have any other questions? " elif current_user_type == 'client': msg = "Thanks a lot for providing the details. With us you can Innovate, Deploy and Scale " \ "AI Solutions in Record Time. For more details please visit https://omdena.com/offerings. Do you have any other questions? " else: msg = "Please enter either developer or client" dispatcher.utter_message(text=msg) class ResetSlotsAction(Action): def name(self) -> Text: return "action_reset_slots" def run(self, dispatcher: CollectingDispatcher, tracker: Tracker, domain: Dict[Text, Any]) -> List[Dict[Text, Any]]: slots_to_reset = ["user_role"] # Add the names of the slots you want to reset events = [SlotSet(slot, None) for slot in slots_to_reset] return events class ActionJoinClassify(Action): def name(self) -> Text: return "action_join_classify" def run(self, dispatcher: CollectingDispatcher, tracker: Tracker, domain: Dict[Text, Any]) -> List[Dict[Text, Any]]: # Get the value of the latest intent last_intent = tracker.slots.get("local_chapter", None) # Check if the last intent was 'local_chapter' if last_intent == 'local chapter': dispatcher.utter_message(template="utter_join_chapter") else: return [FollowupAction("action_get_response_openai")] class ActionEligibilityClassify(Action): def name(self) -> Text: return "action_eligibility_classify" def run(self, dispatcher: CollectingDispatcher, tracker: Tracker, domain: Dict[Text, Any]) -> List[Dict[Text, Any]]: # Get the value of the latest intent last_intent = tracker.slots.get("local_chapter", None) # Check if the last intent was 'local_chapter' if last_intent == 'local chapter': dispatcher.utter_message(template="utter_local_chapter_participation_eligibility") else: return [FollowupAction("action_get_response_openai")] class ActionCostClassify(Action): def name(self) -> Text: return "action_cost_classify" def run(self, dispatcher: CollectingDispatcher, tracker: Tracker, domain: Dict[Text, Any]) -> List[Dict[Text, Any]]: # Get the value of the latest intent last_intent = tracker.slots.get("local_chapter", None) # Check if the last intent was 'local_chapter' if last_intent == 'local chapter': dispatcher.utter_message(template="utter_local_chapter_cost") else: return [FollowupAction("action_get_response_openai")] class SayHelloWorld(Action): def name(self) -> Text: return "action_hello_world" def run(self, dispatcher: CollectingDispatcher, tracker: Tracker, domain: Dict[Text, Any]) -> List[Dict[Text, Any]]: # Use OpenAI API to generate a response secret_value_0 = os.environ.get("openai") openai.api_key = secret_value_0 model_engine = "text-davinci-002" prompt_template = "Say hello world" response = openai.Completion.create( engine=model_engine, prompt=prompt_template, max_tokens=124, temperature=0.8, n=1, stop=None, ) # Output the generated response to user generated_text = response.choices[0].text dispatcher.utter_message(text=generated_text) class GetOpenAIResponse(Action): def name(self) -> Text: return "action_get_response_openai" def run(self, dispatcher: CollectingDispatcher, tracker: Tracker, domain: Dict[Text, Any]) -> List[Dict[Text, Any]]: # Use OpenAI API to generate a response secret_value_0 = os.environ.get("openai") openai.api_key = secret_value_0 model_engine = "text-davinci-002" prompt_template = tracker.latest_message.get('text') response = openai.Completion.create( engine=model_engine, prompt=prompt_template, max_tokens=124, temperature=0.8, n=1, stop=None, ) # Output the generated response to user generated_text = response.choices[0].text dispatcher.utter_message(text=generated_text)