# # run_search.py # import os # import sys # import openai # # Add "/actions" to the sys.path # actions_path = os.path.abspath("/actions") # sys.path.insert(0, actions_path) # # Import search_content.py from /actions folder # from search_content import main_search # # Import api key from secrets # secret_value_0 = os.environ.get("openai") # openai.api_key = secret_value_0 # # Provide your OpenAI API key # def generate_openai_response(query, model_engine="text-davinci-002", max_tokens=124, temperature=0.8): # """Generate a response using the OpenAI API.""" # # Run the main function from search_content.py and store the results in a variable # results = main_search(query) # # Create context from the results # context = "".join([f"#{str(i)}" for i in results])[:2014] # Trim the context to 2014 characters - Modify as necessory # prompt_template = f"Relevant context: {context}\n\n Answer the question in detail: {query}" # # Generate a response using the OpenAI API # response = openai.Completion.create( # engine=model_engine, # prompt=prompt_template, # max_tokens=max_tokens, # temperature=temperature, # n=1, # stop=None, # ) # return response.choices[0].text.strip() # def main(): # query = "What is omdena local chapters, how a developer can benifit from it" # response = generate_openai_response(query) # print(response) # if __name__ == "__main__": # main()