Update main.py
Browse files
main.py
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
-
from fastapi import FastAPI, HTTPException
|
2 |
from fastapi.middleware.cors import CORSMiddleware
|
3 |
-
from pydantic import BaseModel
|
4 |
from typing import List
|
5 |
import json
|
6 |
import os
|
@@ -11,7 +11,11 @@ from txtai.embeddings import Embeddings
|
|
11 |
logging.basicConfig(level=logging.INFO)
|
12 |
logger = logging.getLogger(__name__)
|
13 |
|
14 |
-
app = FastAPI(
|
|
|
|
|
|
|
|
|
15 |
|
16 |
# Enable CORS
|
17 |
app.add_middleware(
|
@@ -25,22 +29,20 @@ app.add_middleware(
|
|
25 |
embeddings = Embeddings({"path": "avsolatorio/GIST-all-MiniLM-L6-v2"})
|
26 |
|
27 |
class DocumentRequest(BaseModel):
|
28 |
-
index_id: str
|
29 |
-
documents: List[str]
|
30 |
|
31 |
class QueryRequest(BaseModel):
|
32 |
-
index_id: str
|
33 |
-
query: str
|
34 |
-
num_results: int
|
35 |
|
36 |
-
def save_embeddings(index_id, document_list):
|
37 |
try:
|
38 |
folder_path = f"/app/indexes/{index_id}"
|
39 |
os.makedirs(folder_path, exist_ok=True)
|
40 |
-
|
41 |
# Save embeddings
|
42 |
embeddings.save(f"{folder_path}/embeddings")
|
43 |
-
|
44 |
# Save document_list
|
45 |
with open(f"{folder_path}/document_list.json", "w") as f:
|
46 |
json.dump(document_list, f)
|
@@ -49,29 +51,31 @@ def save_embeddings(index_id, document_list):
|
|
49 |
logger.error(f"Error saving embeddings for index_id {index_id}: {str(e)}")
|
50 |
raise HTTPException(status_code=500, detail=f"Error saving embeddings: {str(e)}")
|
51 |
|
52 |
-
def load_embeddings(index_id):
|
53 |
try:
|
54 |
folder_path = f"/app/indexes/{index_id}"
|
55 |
-
|
56 |
if not os.path.exists(folder_path):
|
57 |
logger.error(f"Index not found for index_id: {index_id}")
|
58 |
raise HTTPException(status_code=404, detail="Index not found")
|
59 |
-
|
60 |
# Load embeddings
|
61 |
embeddings.load(f"{folder_path}/embeddings")
|
62 |
-
|
63 |
# Load document_list
|
64 |
with open(f"{folder_path}/document_list.json", "r") as f:
|
65 |
document_list = json.load(f)
|
66 |
-
|
67 |
logger.info(f"Embeddings and document list loaded for index_id: {index_id}")
|
68 |
return document_list
|
69 |
except Exception as e:
|
70 |
logger.error(f"Error loading embeddings for index_id {index_id}: {str(e)}")
|
71 |
raise HTTPException(status_code=500, detail=f"Error loading embeddings: {str(e)}")
|
72 |
|
73 |
-
@app.post("/create_index/")
|
74 |
async def create_index(request: DocumentRequest):
|
|
|
|
|
|
|
|
|
|
|
|
|
75 |
try:
|
76 |
document_list = [(i, text, None) for i, text in enumerate(request.documents)]
|
77 |
embeddings.index(document_list)
|
@@ -82,8 +86,15 @@ async def create_index(request: DocumentRequest):
|
|
82 |
logger.error(f"Error creating index: {str(e)}")
|
83 |
raise HTTPException(status_code=500, detail=f"Error creating index: {str(e)}")
|
84 |
|
85 |
-
@app.post("/query_index/")
|
86 |
async def query_index(request: QueryRequest):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
87 |
try:
|
88 |
document_list = load_embeddings(request.index_id)
|
89 |
results = embeddings.search(request.query, request.num_results)
|
|
|
1 |
+
from fastapi import FastAPI, HTTPException, Query, Path
|
2 |
from fastapi.middleware.cors import CORSMiddleware
|
3 |
+
from pydantic import BaseModel, Field
|
4 |
from typing import List
|
5 |
import json
|
6 |
import os
|
|
|
11 |
logging.basicConfig(level=logging.INFO)
|
12 |
logger = logging.getLogger(__name__)
|
13 |
|
14 |
+
app = FastAPI(
|
15 |
+
title="Embeddings API",
|
16 |
+
description="An API for creating and querying text embeddings indexes.",
|
17 |
+
version="1.0.0"
|
18 |
+
)
|
19 |
|
20 |
# Enable CORS
|
21 |
app.add_middleware(
|
|
|
29 |
embeddings = Embeddings({"path": "avsolatorio/GIST-all-MiniLM-L6-v2"})
|
30 |
|
31 |
class DocumentRequest(BaseModel):
|
32 |
+
index_id: str = Field(..., description="Unique identifier for the index")
|
33 |
+
documents: List[str] = Field(..., description="List of documents to be indexed")
|
34 |
|
35 |
class QueryRequest(BaseModel):
|
36 |
+
index_id: str = Field(..., description="Unique identifier for the index to query")
|
37 |
+
query: str = Field(..., description="The search query")
|
38 |
+
num_results: int = Field(..., description="Number of results to return", ge=1)
|
39 |
|
40 |
+
def save_embeddings(index_id: str, document_list: List[str]):
|
41 |
try:
|
42 |
folder_path = f"/app/indexes/{index_id}"
|
43 |
os.makedirs(folder_path, exist_ok=True)
|
|
|
44 |
# Save embeddings
|
45 |
embeddings.save(f"{folder_path}/embeddings")
|
|
|
46 |
# Save document_list
|
47 |
with open(f"{folder_path}/document_list.json", "w") as f:
|
48 |
json.dump(document_list, f)
|
|
|
51 |
logger.error(f"Error saving embeddings for index_id {index_id}: {str(e)}")
|
52 |
raise HTTPException(status_code=500, detail=f"Error saving embeddings: {str(e)}")
|
53 |
|
54 |
+
def load_embeddings(index_id: str) -> List[str]:
|
55 |
try:
|
56 |
folder_path = f"/app/indexes/{index_id}"
|
|
|
57 |
if not os.path.exists(folder_path):
|
58 |
logger.error(f"Index not found for index_id: {index_id}")
|
59 |
raise HTTPException(status_code=404, detail="Index not found")
|
|
|
60 |
# Load embeddings
|
61 |
embeddings.load(f"{folder_path}/embeddings")
|
|
|
62 |
# Load document_list
|
63 |
with open(f"{folder_path}/document_list.json", "r") as f:
|
64 |
document_list = json.load(f)
|
|
|
65 |
logger.info(f"Embeddings and document list loaded for index_id: {index_id}")
|
66 |
return document_list
|
67 |
except Exception as e:
|
68 |
logger.error(f"Error loading embeddings for index_id {index_id}: {str(e)}")
|
69 |
raise HTTPException(status_code=500, detail=f"Error loading embeddings: {str(e)}")
|
70 |
|
71 |
+
@app.post("/create_index/", response_model=dict, tags=["Index Operations"])
|
72 |
async def create_index(request: DocumentRequest):
|
73 |
+
"""
|
74 |
+
Create a new index with the given documents.
|
75 |
+
|
76 |
+
- **index_id**: Unique identifier for the index
|
77 |
+
- **documents**: List of documents to be indexed
|
78 |
+
"""
|
79 |
try:
|
80 |
document_list = [(i, text, None) for i, text in enumerate(request.documents)]
|
81 |
embeddings.index(document_list)
|
|
|
86 |
logger.error(f"Error creating index: {str(e)}")
|
87 |
raise HTTPException(status_code=500, detail=f"Error creating index: {str(e)}")
|
88 |
|
89 |
+
@app.post("/query_index/", response_model=dict, tags=["Index Operations"])
|
90 |
async def query_index(request: QueryRequest):
|
91 |
+
"""
|
92 |
+
Query an existing index with the given search query.
|
93 |
+
|
94 |
+
- **index_id**: Unique identifier for the index to query
|
95 |
+
- **query**: The search query
|
96 |
+
- **num_results**: Number of results to return
|
97 |
+
"""
|
98 |
try:
|
99 |
document_list = load_embeddings(request.index_id)
|
100 |
results = embeddings.search(request.query, request.num_results)
|