Spaces:
Running
Running
# %pip install llama-index llama-index-vector-stores-lancedb | |
# %pip install lancedb==0.6.13 #Only required if the above cell installs an older version of lancedb (pypi package may not be released yet) | |
# %pip install llama-index-embeddings-fastembed | |
# pip install llama-index-readers-file | |
from llama_index.core import Settings, SimpleDirectoryReader, VectorStoreIndex | |
from llama_index.vector_stores.lancedb import LanceDBVectorStore | |
from llama_index.embeddings.fastembed import FastEmbedEmbedding | |
# Configure global settings | |
Settings.embed_model = FastEmbedEmbedding(model_name="BAAI/bge-small-en-v1.5") | |
# Setup LanceDB vector store | |
vector_store = LanceDBVectorStore( | |
uri="./lancedb", | |
mode="overwrite", | |
query_type="vector" | |
) | |
# Load your documents | |
documents = SimpleDirectoryReader("D:\DEV\LIZMOTORS\LANGCHAIN\digiyatrav2\chatbot\data").load_data() | |
# Create the index | |
index = VectorStoreIndex.from_documents( | |
documents, | |
vector_store=vector_store | |
) | |
# Create a retriever | |
retriever = index.as_retriever() | |
response = retriever.retrieve("Your query here") | |
print(response) |