# %pip install llama-index llama-index-vector-stores-lancedb # %pip install lancedb==0.6.13 #Only required if the above cell installs an older version of lancedb (pypi package may not be released yet) # %pip install llama-index-embeddings-fastembed # pip install llama-index-readers-file from llama_index.core import Settings, SimpleDirectoryReader, VectorStoreIndex from llama_index.vector_stores.lancedb import LanceDBVectorStore from llama_index.embeddings.fastembed import FastEmbedEmbedding # Configure global settings Settings.embed_model = FastEmbedEmbedding(model_name="BAAI/bge-small-en-v1.5") # Setup LanceDB vector store vector_store = LanceDBVectorStore( uri="./lancedb", mode="overwrite", query_type="vector" ) # Load your documents documents = SimpleDirectoryReader("D:\DEV\LIZMOTORS\LANGCHAIN\digiyatrav2\chatbot\data").load_data() # Create the index index = VectorStoreIndex.from_documents( documents, vector_store=vector_store ) # Create a retriever retriever = index.as_retriever() response = retriever.retrieve("Your query here") print(response)