File size: 4,359 Bytes
1bdface
6fda465
b5b2e6a
a3bb0bd
ffa393c
1d78f18
abc1ce4
1bdface
 
ab0b795
 
bb6b8b7
4acb7cc
b5b2e6a
a3bb0bd
ea680b0
a3bb0bd
 
ea680b0
a3bb0bd
 
b5b2e6a
9300ae8
 
 
a3bb0bd
dbf8d54
 
949bf2b
ffa393c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3562885
ffa393c
 
 
c8510e0
 
 
 
 
 
 
 
bb6b8b7
 
 
ab0b795
 
bb6b8b7
ab0b795
 
 
 
 
1bdface
676b3da
c8510e0
b32973f
 
 
 
 
eebc41d
b32973f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
from fastapi import FastAPI, HTTPException, Query, Depends
from fastapi.responses import Response
from pydantic import BaseModel
import hrequests
import trafilatura
from fastapi.middleware.cors import CORSMiddleware
from typing import Optional
from pytrends.request import TrendReq
from datetime import datetime, timedelta
from fastapi_cache import FastAPICache
from fastapi_cache.backends.inmemory import InMemoryBackend
from fastapi_cache.decorator import cache
import pdfkit

app = FastAPI()

class URLRequest(BaseModel):
    url: str

@app.post("/scrape")
async def scrape(url_request: URLRequest):
    try:
        response = hrequests.get(url_request.url, browser='chrome')


        return {"content": response.text}
    except Exception as e: 
        raise e

@app.get("/extract-article")
def extract_article(
    url: str,
    record_id: Optional[str] = Query(None, description="Add an ID to the metadata."),
    no_fallback: Optional[bool] = Query(False, description="Skip the backup extraction with readability-lxml and justext."),
    favor_precision: Optional[bool] = Query(False, description="Prefer less text but correct extraction."),
    favor_recall: Optional[bool] = Query(False, description="When unsure, prefer more text."),
    include_comments: Optional[bool] = Query(True, description="Extract comments along with the main text."),
    output_format: Optional[str] = Query('txt', description="Define an output format: 'csv', 'json', 'markdown', 'txt', 'xml', 'xmltei'.", enum=["csv", "json", "markdown", "txt", "xml", "xmltei"]),
    target_language: Optional[str] = Query(None, description="Define a language to discard invalid documents (ISO 639-1 format)."),
    include_tables: Optional[bool] = Query(True, description="Take into account information within the HTML <table> element."),
    include_images: Optional[bool] = Query(False, description="Take images into account (experimental)."),
    include_links: Optional[bool] = Query(False, description="Keep links along with their targets (experimental)."),
    deduplicate: Optional[bool] = Query(False, description="Remove duplicate segments and documents."),
    max_tree_size: Optional[int] = Query(None, description="Discard documents with too many elements.")
):
    response = hrequests.get(url)
    filecontent = response.text
    extracted = trafilatura.extract(
        filecontent,
        url=url,
        record_id=record_id,
        no_fallback=no_fallback,
        favor_precision=favor_precision,
        favor_recall=favor_recall,
        include_comments=include_comments,
        output_format=output_format,
        target_language=target_language,
        include_tables=include_tables,
        include_images=include_images,
        include_links=include_links,
        deduplicate=deduplicate,
        max_tree_size=max_tree_size
    )
    
    if extracted:
        return {"article": trafilatura.utils.sanitize(extracted)}
    else:
        return {"error": "Could not extract the article"}

app.add_middleware(
    CORSMiddleware,
    allow_origins=["*"],
    allow_credentials=True,
    allow_methods=["*"],
    allow_headers=["*"],
)

pytrends = TrendReq()

@app.on_event("startup")
async def startup():
    FastAPICache.init(InMemoryBackend(), prefix="fastapi-cache")

@app.get("/realtime_trending_searches")
@cache(expire=3600)
async def get_realtime_trending_searches(pn: str = Query('US', description="Country code for trending searches")):
    trending_searches = pytrends.realtime_trending_searches(pn=pn)
    return trending_searches.to_dict(orient='records')

@app.get("/", tags=["Home"])
def api_home():
    return {'detail': 'Welcome to Web-Scraping API! Visit https://pvanand-web-scraping.hf.space/docs to test'}    

class HTMLRequest(BaseModel):
    html_content: str

@app.post("/html_to_pdf")
async def convert_to_pdf(request: HTMLRequest):
    try:
        options = {
            'page-size': 'A4',
            'margin-top': '0.75in',
            'margin-right': '0.75in',
            'margin-bottom': '0.75in',
            'margin-left': '0.75in',
            'encoding': "UTF-8",
        }
        
        pdf = pdfkit.from_string(request.html_content, False, options=options)
        return Response(content=pdf, media_type="application/pdf")
    except Exception as e:
        raise HTTPException(status_code=500, detail=str(e))