Spaces:
Sleeping
Sleeping
import streamlit as st | |
from transformers import AutoTokenizer, AutoModelForCausalLM, AutoModelForSeq2SeqLM | |
st.set_page_config(page_title="Simple LLM Chatbot", page_icon="icon.png") | |
def load_model_tokenizer(model_name, hf_api_key): | |
if model_name == "LLaMa-2B": | |
model_name="llmware/bling-sheared-llama-2.7b-0.1" | |
model = AutoModelForCausalLM.from_pretrained(model_name, token=hf_api_key) | |
tokenizer = AutoTokenizer.from_pretrained(model_name, tokenizer=hf_api_key) | |
elif model_name == "Red-Pajamas-3b": | |
model_name = "llmware/bling-red-pajamas-3b-0.1" | |
model = AutoModelForCausalLM.from_pretrained(model_name) | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
return (model,tokenizer) | |
def generate_response(prompt_input, model, tokenizer): | |
inputs = tokenizer.encode_plus(prompt_input, return_tensors="pt") | |
# Generate the response from the model with additional parameters | |
outputs = model.generate(**inputs, max_length=max_length, do_sample=True ,temperature=temperature) | |
response = tokenizer.decode(outputs[0], skip_special_tokens=True).strip() | |
return response | |
st.set_page_config(page_title="Learn Geoscience") | |
with st.sidebar: | |
st.title('Learn Geoscience Chat') | |
if 'hf_key' in st.secrets: | |
st.success('Huggingface API key provided', icon='β ') | |
hf_api_key = st.secrets['hf_key'] | |
else: | |
hf_api_key = st.text_input('Enter Huggingface API Key:', type='password') | |
if not hf_api_key: | |
st.warning('Please enter Huggingface API key!', icon='β οΈ') | |
else: | |
st.success('Proceed to entering your prompt message!', icon='π') | |
max_length = st.slider("Max Length", 10, 100, 50) | |
temperature = st.slider("Temperature", 0.0, 1.0, 0.7) | |
if "messages" not in st.session_state.keys(): | |
st.session_state.messages = [{"role": "assistant", "content": "How may I help you?"}] | |
model_name = st.radio("Select model to chat", options=["LLaMa-2B", "Red-Pajamas-3b"], horizontal=True, key='model_selection') | |
model, tokenizer = load_model_tokenizer(model_name, hf_api_key) | |
for message in st.session_state.messages: | |
with st.chat_message(message["role"]): | |
st.write(message["content"]) | |
if prompt := st.chat_input(disabled = not hf_api_key): | |
st.session_state.messages.append({"role": "user", "content": prompt}) | |
with st.chat_message("user"): | |
st.write(prompt) | |
if st.session_state.messages[-1]["role"] != "assistant": | |
with st.chat_message("assistant"): | |
with st.spinner("Thinking..."): | |
response = generate_response(prompt, model, tokenizer) | |
st.write(response) | |
message = {"role": "assistant", "content": response} | |
st.session_state.messages.append(message) | |