File size: 10,858 Bytes
43139c6
5299cfa
 
973ae4d
16273f5
973ae4d
 
8d810fe
16273f5
 
5299cfa
973ae4d
16273f5
8d810fe
973ae4d
 
5299cfa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
43139c6
973ae4d
 
5299cfa
 
 
 
 
 
 
 
 
 
 
 
 
 
43139c6
973ae4d
c6e47c7
973ae4d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c6e47c7
 
16273f5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
973ae4d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dfbf21d
973ae4d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6e96b49
973ae4d
 
 
 
 
 
 
 
 
16273f5
973ae4d
 
16273f5
 
 
 
 
 
 
973ae4d
 
16273f5
973ae4d
 
 
16273f5
973ae4d
 
 
 
 
 
 
 
 
 
 
 
c6e47c7
 
 
 
 
 
 
 
 
 
973ae4d
c6e47c7
973ae4d
16273f5
973ae4d
c6e47c7
 
973ae4d
 
 
 
 
43139c6
16273f5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bc652b7
 
 
 
 
 
 
 
 
 
 
 
16273f5
 
 
 
 
 
 
 
 
 
 
973ae4d
 
 
8d810fe
973ae4d
16273f5
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
import gradio as gr
from langchain_core.messages import HumanMessage
import src.passage_finder as pf
import src.srf_bot as sb
import src.generic_bot as gb
import prompts.system_prompts as sp
import os


# Initialize PassageFinder, SRFChatbot, and GenericChatbot
passage_finder = pf.PassageFinder()
chatbot = sb.SRFChatbot()
generic_chatbot = gb.GenericChatbot()

# Passage Finder functions
def respond_passage_finder(message):
    config = passage_finder.get_configurable()
    results = passage_finder.graph.invoke({"messages": [HumanMessage(content=message)]}, config)
    
    documents = results.get('documents', [])
    
    output = []
    for doc in documents:
        quotes = doc.metadata.get('matched_quotes', [])
        publication = doc.metadata.get('publication_name', 'Unknown Publication')
        chapter = doc.metadata.get('chapter_name', 'Unknown Chapter')
        full_passage = doc.metadata.get('highlighted_content', '')
        
        quote_text = "\n".join([f"• \"{q.quote}\"" for q in quotes])
        output.append({
            "quotes": quote_text,
            "reference": f"{publication}: {chapter}",
            "full_passage": full_passage
        })
    
    return output

def process_input_passage_finder(message):
    results = respond_passage_finder(message)
    html_output = "<div class='response-container'>"
    for result in results:
        html_output += f"""
        <div class='result-item'>
            <h3 class='reference'>{result['reference']}</h3>
            <div class='quotes'>{result['quotes'].replace("• ", "<br>• ")}</div>
            <details>
                <summary>Show full passage</summary>
                <div class='full-passage'>{result['full_passage']}</div>
            </details>
        </div>
        """
    html_output += "</div>"
    return html_output

# Chatbot functions

def respond_chatbot(query, history):
    formatted_query = [HumanMessage(content=query)]
    result = chatbot.graph.invoke({"messages": formatted_query}, chatbot.config)
    state = chatbot.graph.get_state(config=chatbot.config).values
    documents = state.get("documents")
    passages = ''
    if documents and len(documents) > 0:
        for d in documents:
            passages += f'<b>{d.metadata["publication_name"]} - {d.metadata["chapter_name"]}</b>\n{d.page_content}\n\n'
        history.append((f'Passages: {query}', passages))
    response = result["messages"][-1].content
    system_message_dropdown = state.get("system_message_dropdown")
    history.append((query, f"<i>[{system_message_dropdown}]</i>\n" + response))
    return history



# Generic Chatbot function
def respond_genericchatbot(query, history):
    formatted_query = [HumanMessage(content=query)]
    result = generic_chatbot.graph.invoke({"messages": formatted_query}, generic_chatbot.config)
    state = generic_chatbot.graph.get_state(config=generic_chatbot.config).values
    documents = state.get("documents")
    passages = ''
    if documents and len(documents) > 0:
        for d in documents:
            passages += f'<b>{d.metadata["publication_name"]} - {d.metadata["chapter_name"]}</b>\n{d.page_content}\n\n'
        history.append((f'Passages: {query}', passages))
    response = result["messages"][-1].content
    history.append((query, response))
    return history

# Define the CSS
css = """
body { background-color: #f0f0f0; }
.gradio-container { background-color: #ffffff; }
.response-container { border: 1px solid #e0e0e0; border-radius: 8px; padding: 20px; background-color: #f9f9f9; }
.result-item { margin-bottom: 20px; background-color: white; padding: 15px; border-radius: 5px; box-shadow: 0 2px 5px rgba(0,0,0,0.1); }
.reference { color: #2c3e50; margin-bottom: 10px; }
.quotes { font-style: italic; margin-bottom: 10px; }
.full-passage { margin-top: 10px; padding: 10px; background-color: #f0f0f0; border-radius: 5px; }
details summary { cursor: pointer; color: #3498db; font-weight: bold; }
details summary:hover { text-decoration: underline; }

/* Chatbot specific styles */
.gr-button { background-color: #333333; color: white; font-size: 18px; padding: 10px; }
.gr-textbox textarea { font-size: 18px; color: black; }
.gr-dropdown { font-size: 18px; color: black; }
.source-box { background-color: white; padding: 10px; border-radius: 8px; margin-top: 20px; color: black; border: 1px solid #D0D0D0; }

/* Dark mode and responsive styles */
@media (prefers-color-scheme: dark) {
    .gradio-container { background-color: #1e1e1e; color: white; }
    h1, h2, p { color: white; }
    .gr-textbox textarea { background-color: #333333; color: white; }
    .gr-button { background-color: #555555; color: white; }
    .gr-dropdown { background-color: #333333; color: white; }
    .source-box { background-color: #333333; color: white; border: 1px solid #555555; }
}

@media (max-width: 600px) {
    .gr-row { flex-direction: column !important; }
    .gr-column { width: 100% !important; }
}
"""

with gr.Blocks(css=css) as demo:
    gr.Markdown("# SRF Teachings App")
    
    with gr.Tabs():
        with gr.TabItem("Passage Finder"):
            gr.Markdown("Ask questions about Self-Realization Fellowship teachings and receive responses with relevant quotes.")
            
            with gr.Row():
                input_text_pf = gr.Textbox(
                    placeholder="Ask about the meaning of life, spirituality, or any other topic...",
                    label="Your Question"
                )
                submit_btn_pf = gr.Button("Submit", variant="primary")
            
            output_area_pf = gr.HTML()
            
            gr.Markdown("### Sources")
            gr.Textbox(value="Journey to Self Realization, Second Coming of Christ, and Autobiography of a Yogi", 
                       label="Available Sources", interactive=False)
            
            submit_btn_pf.click(process_input_passage_finder, inputs=input_text_pf, outputs=output_area_pf)

            gr.Examples(
                examples=[
                    "What is the meaning of life?",
                    "Importance of good posture",
                    "How can I find inner peace?",
                    "What does Paramahansa Yogananda say about meditation?",
                ],
                inputs=input_text_pf,
            )

        with gr.TabItem("Custom Chatbots"):
            with gr.Row():
                with gr.Column(scale=4):
                    chatbot_output = gr.Chatbot(height=600)
                    user_input_cb = gr.Textbox(placeholder="Type your question here...", label="Your Question", value="What is the meaning of life?")
                    submit_button_cb = gr.Button("Submit")
                
                with gr.Column(scale=1):
                    system_prompt_dropdown = gr.Dropdown(
                        choices=list(sp.system_prompt_templates.keys()),
                        label="Select Chatbot",
                        value=list(sp.system_prompt_templates.keys())[0],
                    )
                    
                    chatbot_description = gr.Textbox(
                        value=sp.chatbot_descriptions[list(sp.system_prompt_templates.keys())[0]],
                        label="Chatbot Description",
                        lines=3,
                        interactive=False
                    )
                    system_prompt_display = gr.Textbox(
                        value=sp.system_prompt_templates[list(sp.system_prompt_templates.keys())[0]],
                        label="Chatbot Instructions",
                        lines=5,
                        interactive=False
                    )

                    
                    gr.Markdown("""
                    <div class="source-box">
                        <strong>Available sources:</strong>
                        <ul>
                            <li>Journey to Self-Realization</li>
                            <li>The Second Coming of Christ</li>
                            <li>Autobiography of a Yogi</li>
                        </ul>
                    </div>
                    """)
            
            # system_prompt_dropdown.change(
            #     fn=lambda x: (sp.chatbot_descriptions[x], sp.system_prompt_templates[x]),
            #     inputs=[system_prompt_dropdown],
            #     outputs=[chatbot_description, system_prompt_display]
            # )
            
            def update_chatbot_info(selected_prompt):
                chatbot.reset_system_prompt(selected_prompt)
                return sp.chatbot_descriptions[selected_prompt], sp.system_prompt_templates[selected_prompt]

            system_prompt_dropdown.change(
                fn=update_chatbot_info,
                inputs=[system_prompt_dropdown],
                outputs=[chatbot_description, system_prompt_display]
            )


            submit_button_cb.click(
                fn=respond_chatbot,
                inputs=[user_input_cb, chatbot_output],
                outputs=[chatbot_output]
            )

            gr.Examples(
                examples=[
                    "importance of meditation",
                    "How can I develop unconditional love?",
                    "concept of karma",
                    "What are some techniques for spiritual growth?",
                ],
                inputs=user_input_cb,
            )

        with gr.TabItem("Generic Chatbot"):
            with gr.Row():
                with gr.Column(scale=4):
                    generic_chatbot_output = gr.Chatbot(height=600)
                    user_input_gc = gr.Textbox(placeholder="Type your question here...", label="Your Question", value="Loaves and fishes")
                    submit_button_gc = gr.Button("Submit")

            # ... (existing code for the column with markdown)

            def respond_and_clear(query, history):
                updated_history = respond_genericchatbot(query, history)
                return updated_history, ""  # Return updated history and empty string for input

            submit_button_gc.click(
                fn=respond_and_clear,
                inputs=[user_input_gc, generic_chatbot_output],
                outputs=[generic_chatbot_output, user_input_gc]
            )

            gr.Examples(
                examples=[
                    "Tell me about Paramahansa Yogananda's life",
                    "What are the main teachings of Self-Realization Fellowship?",
                    "Explain the concept of Kriya Yoga",
                    "Can you provide quotes about the importance of meditation?",
                ],
                inputs=user_input_gc,
            )

# Access the secrets
username = os.getenv("USERNAME")
password = os.getenv("PASSWORD")

# Launch the interface
demo.launch(share=True, auth=(username, password), debug=True)