Spaces:
Running
on
T4
Running
on
T4
File size: 5,446 Bytes
c174364 ebc74bd c174364 ebc74bd c174364 ebc74bd c174364 ebc74bd 56a16bc ebc74bd c174364 ebc74bd 56a16bc ebc74bd c174364 4044b32 ebc74bd 56a16bc ebc74bd c174364 317657b ebc74bd 56a16bc ebc74bd c174364 56a16bc ebc74bd 56a16bc ebc74bd 56a16bc ebc74bd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 |
# MIT License
#
# Copyright (c) 2022- CNRS
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
import io
import base64
import numpy as np
import scipy.io.wavfile
from typing import Text
from huggingface_hub import HfApi
import streamlit as st
from pyannote.audio import Pipeline
from pyannote.audio import Audio
from pyannote.core import Segment
import streamlit.components.v1 as components
def to_base64(waveform: np.ndarray, sample_rate: int = 16000) -> Text:
"""Convert waveform to base64 data"""
waveform /= np.max(np.abs(waveform)) + 1e-8
with io.BytesIO() as content:
scipy.io.wavfile.write(content, sample_rate, waveform)
content.seek(0)
b64 = base64.b64encode(content.read()).decode()
b64 = f"data:audio/x-wav;base64,{b64}"
return b64
PYANNOTE_LOGO = "https://avatars.githubusercontent.com/u/7559051?s=400&v=4"
EXCERPT = 30.0
st.set_page_config(
page_title="pyannote.audio pretrained pipelines", page_icon=PYANNOTE_LOGO
)
st.sidebar.image(PYANNOTE_LOGO)
st.markdown("""# 🎹 Pretrained pipelines
""")
PIPELINES = [
p.modelId
for p in HfApi().list_models(filter="pyannote-audio-pipeline")
if p.modelId.startswith("pyannote/")
]
audio = Audio(sample_rate=16000, mono=True)
selected_pipeline = st.selectbox("Select a pipeline", PIPELINES, index=0)
with st.spinner("Loading pipeline..."):
pipeline = Pipeline.from_pretrained(selected_pipeline, use_auth_token=st.secrets["PYANNOTE_TOKEN"])
uploaded_file = st.file_uploader("Choose an audio file")
if uploaded_file is not None:
try:
duration = audio.get_duration(uploaded_file)
except RuntimeError as e:
st.error(e)
st.stop()
waveform, sample_rate = audio.crop(
uploaded_file, Segment(0, min(duration, EXCERPT))
)
uri = "".join(uploaded_file.name.split())
file = {"waveform": waveform, "sample_rate": sample_rate, "uri": uri}
with st.spinner(f"Processing first {EXCERPT:g} seconds..."):
output = pipeline(file)
with open('assets/template.html') as html, open('assets/style.css') as css:
html_template = html.read()
st.markdown('<style>{}</style>'.format(css.read()), unsafe_allow_html=True)
colors = [
"#ffd70033",
"#00ffff33",
"#ff00ff33",
"#00ff0033",
"#9932cc33",
"#00bfff33",
"#ff7f5033",
"#66cdaa33",
]
num_colors = len(colors)
label2color = {label: colors[k % num_colors] for k, label in enumerate(sorted(output.labels()))}
BASE64 = to_base64(waveform.numpy().T)
REGIONS = ""
LEGENDS = ""
labels=[]
for segment, _, label in output.itertracks(yield_label=True):
REGIONS += f"var re = wavesurfer.addRegion({{start: {segment.start:g}, end: {segment.end:g}, color: '{label2color[label]}', resize : false, drag : false}});"
if not label in labels:
LEGENDS += f"<li><span style='background-color:{label2color[label]}'></span>{label}</li>"
labels.append(label)
html = html_template.replace("BASE64", BASE64).replace("REGIONS", REGIONS)
components.html(html, height=250, scrolling=True)
st.markdown("<div style='overflow : auto'><ul class='legend'>"+LEGENDS+"</ul></div>", unsafe_allow_html=True)
st.markdown("---")
with io.StringIO() as fp:
output.write_rttm(fp)
content = fp.getvalue()
b64 = base64.b64encode(content.encode()).decode()
href = f'Download as <a download="{output.uri}.rttm" href="data:file/text;base64,{b64}">RTTM</a> or run it on the whole {int(duration):d}s file:'
st.markdown(href, unsafe_allow_html=True)
code = f"""
from pyannote.audio import Pipeline
pipeline = Pipeline.from_pretrained("{selected_pipeline}")
output = pipeline("{uploaded_file.name}")
"""
st.code(code, language='python')
st.sidebar.markdown(
"""
-------------------
To use these pipelines on more and longer files on your own (GPU, hence much faster) servers, check the [documentation](https://github.com/pyannote/pyannote-audio).
For [technical questions](https://github.com/pyannote/pyannote-audio/discussions) and [bug reports](https://github.com/pyannote/pyannote-audio/issues), please check [pyannote.audio](https://github.com/pyannote/pyannote-audio) Github repository.
For commercial enquiries and scientific consulting, please contact [me](mailto:herve@niderb.fr).
"""
)
|