import torch import gradio as gr import matplotlib.pyplot as plt import torchvision use_gpu = True if torch.cuda.is_available() else False model = torch.hub.load('facebookresearch/pytorch_GAN_zoo:hub', 'DCGAN', pretrained=True, useGPU=use_gpu) def dcgan(num_images): noise, _ = model.buildNoiseData(int(num_images)) with torch.no_grad(): generated_images = model.test(noise) plt.imshow(torchvision.utils.make_grid(generated_images).permute(1, 2, 0).cpu().numpy()) plt.axis("off") return plt inputs = gr.inputs.Number(label="number of images") outputs = gr.outputs.Image(label="Output Image") title = "DCGAN" description = "demo for DCGAN. To use it, simply add the number of images to generate or click on the examples. Read more below." article = "
Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks | Github Repo
" examples = [ [1], [2], [3], [4], [64] ] gr.Interface(dcgan, inputs, outputs, title=title, description=description, article=article, analytics_enabled=False, examples=examples).launch(debug=True)