Spaces:
Runtime error
Runtime error
File size: 2,559 Bytes
7b01c04 d42bec7 7b01c04 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 |
import torch
from PIL import Image
from torchvision import transforms
import gradio as gr
import os
os.system("wget https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt")
target_platform = "proxyless_cpu"
# proxyless_gpu, proxyless_mobile, proxyless_mobile14 are also avaliable.
model = torch.hub.load('mit-han-lab/ProxylessNAS', target_platform, pretrained=True)
model.eval()
# Download an example image from the pytorch website
torch.hub.download_url_to_file("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg")
# sample execution (requires torchvision)
def inference(input_image):
preprocess = transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
])
input_tensor = preprocess(input_image)
input_batch = input_tensor.unsqueeze(0) # create a mini-batch as expected by the model
# move the input and model to GPU for speed if available
if torch.cuda.is_available():
input_batch = input_batch.to('cuda')
model.to('cuda')
with torch.no_grad():
output = model(input_batch)
# The output has unnormalized scores. To get probabilities, you can run a softmax on it.
probabilities = torch.nn.functional.softmax(output[0], dim=0)
# Read the categories
with open("imagenet_classes.txt", "r") as f:
categories = [s.strip() for s in f.readlines()]
# Show top categories per image
top5_prob, top5_catid = torch.topk(probabilities, 5)
result = {}
for i in range(top5_prob.size(0)):
result[categories[top5_catid[i]]] = top5_prob[i].item()
return result
inputs = gr.inputs.Image(type='pil')
outputs = gr.outputs.Label(type="confidences",num_top_classes=5)
title = "PROXYLESSNAS"
description = "Gradio demo for PROXYLESSNAS, Proxylessly specialize CNN architectures for different hardware platforms. To use it, simply upload your image, or click one of the examples to load them. Read more at the links below."
article = "<p style='text-align: center'><a href='https://arxiv.org/abs/1812.00332' target='_blank'>ProxylessNAS: Direct Neural Architecture Search on Target Task and Hardware</a> | <a href='https://github.com/mit-han-lab/ProxylessNAS' target='_blank'>Github Repo</a></p>"
examples = [
['dog.jpg']
]
gr.Interface(inference, inputs, outputs, title=title, description=description, article=article, examples=examples, analytics_enabled=False).launch() |