File size: 2,726 Bytes
d409e2b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ebc4162
d409e2b
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
import torch
from PIL import Image
from torchvision import transforms
import gradio as gr
import os

os.system("wget https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt")


import torch
model = torch.hub.load('pytorch/vision:v0.10.0', 'resnet18', pretrained=True)
# or any of these variants
# model = torch.hub.load('pytorch/vision:v0.10.0', 'resnet34', pretrained=True)
# model = torch.hub.load('pytorch/vision:v0.10.0', 'resnet50', pretrained=True)
# model = torch.hub.load('pytorch/vision:v0.10.0', 'resnet101', pretrained=True)
# model = torch.hub.load('pytorch/vision:v0.10.0', 'resnet152', pretrained=True)
model.eval()

# Download an example image from the pytorch website
torch.hub.download_url_to_file("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg")

def inference(input_image):
    preprocess = transforms.Compose([
        transforms.Resize(256),
        transforms.CenterCrop(224),
        transforms.ToTensor(),
        transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
    ])
    input_tensor = preprocess(input_image)
    input_batch = input_tensor.unsqueeze(0) # create a mini-batch as expected by the model

    # move the input and model to GPU for speed if available
    if torch.cuda.is_available():
        input_batch = input_batch.to('cuda')
        model.to('cuda')

    with torch.no_grad():
        output = model(input_batch)
    # The output has unnormalized scores. To get probabilities, you can run a softmax on it.
    probabilities = torch.nn.functional.softmax(output[0], dim=0)

    # Read the categories
    with open("imagenet_classes.txt", "r") as f:
        categories = [s.strip() for s in f.readlines()]
    # Show top categories per image
    top5_prob, top5_catid = torch.topk(probabilities, 5)
    result = {}
    for i in range(top5_prob.size(0)):
        result[categories[top5_catid[i]]] = top5_prob[i].item()
    return result

inputs = gr.inputs.Image(type='pil')
outputs = gr.outputs.Label(type="confidences",num_top_classes=5)

title = "ResNet"
description = "Gradio demo for ResNet, Deep residual networks pre-trained on ImageNet. To use it, simply upload your image, or click one of the examples to load them. Read more at the links below."

article = "<p style='text-align: center'><a href='https://arxiv.org/abs/1512.03385' target='_blank'>Deep Residual Learning for Image Recognition</a> | <a href='https://github.com/pytorch/vision/blob/main/torchvision/models/resnet.py' target='_blank'>Github Repo</a></p>"

examples = [
            ['dog.jpg']
]

gr.Interface(inference, inputs, outputs, title=title, description=description, article=article, examples=examples, analytics_enabled=False).launch()