File size: 2,879 Bytes
934c9c5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
import torch
from PIL import Image
from torchvision import transforms
import gradio as gr
import os

os.system("wget https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt")

torch.hub.download_url_to_file("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg")

model = torch.hub.load('pytorch/vision:v0.9.0', 'vgg11', pretrained=True)
# or any of these variants
# model = torch.hub.load('pytorch/vision:v0.9.0', 'vgg11_bn', pretrained=True)
# model = torch.hub.load('pytorch/vision:v0.9.0', 'vgg13', pretrained=True)
# model = torch.hub.load('pytorch/vision:v0.9.0', 'vgg13_bn', pretrained=True)
# model = torch.hub.load('pytorch/vision:v0.9.0', 'vgg16', pretrained=True)
# model = torch.hub.load('pytorch/vision:v0.9.0', 'vgg16_bn', pretrained=True)
# model = torch.hub.load('pytorch/vision:v0.9.0', 'vgg19', pretrained=True)
# model = torch.hub.load('pytorch/vision:v0.9.0', 'vgg19_bn', pretrained=True)
model.eval()
def inference(input_image):

    preprocess = transforms.Compose([
        transforms.Resize(256),
        transforms.CenterCrop(224),
        transforms.ToTensor(),
        transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
    ])
    input_tensor = preprocess(input_image)
    input_batch = input_tensor.unsqueeze(0) # create a mini-batch as expected by the model

    # move the input and model to GPU for speed if available
    if torch.cuda.is_available():
        input_batch = input_batch.to('cuda')
        model.to('cuda')

    with torch.no_grad():
        output = model(input_batch)
    # The output has unnormalized scores. To get probabilities, you can run a softmax on it.
    probabilities = torch.nn.functional.softmax(output[0], dim=0)

    # Read the categories
    with open("imagenet_classes.txt", "r") as f:
        categories = [s.strip() for s in f.readlines()]
    # Show top categories per image
    top5_prob, top5_catid = torch.topk(probabilities, 5)
    result = {}
    for i in range(top5_prob.size(0)):
        result[categories[top5_catid[i]]] = top5_prob[i].item()
    return result

inputs = gr.inputs.Image(type='pil')
outputs = gr.outputs.Label(type="confidences",num_top_classes=5)

title = "VGG-NETS"
description = "Gradio demo for VGG-NETS, Award winning ConvNets from 2014 Imagenet ILSVRC challenge. To use it, simply upload your image, or click one of the examples to load them. Read more at the links below."
article = "<p style='text-align: center'><a href='https://arxiv.org/abs/1409.1556'>Very Deep Convolutional Networks for Large-Scale Image Recognition</a> | <a href='https://github.com/pytorch/vision/blob/master/torchvision/models/vgg.py'>Github Repo</a></p>"

examples = [
            ['dog.jpg']
]
gr.Interface(inference, inputs, outputs, title=title, description=description, article=article, examples=examples, analytics_enabled=False).launch()