import torch from PIL import Image from torchvision import transforms import gradio as gr import os os.system("wget https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt") torch.hub.download_url_to_file("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg") model = torch.hub.load('pytorch/vision:v0.9.0', 'vgg11', pretrained=True) # or any of these variants # model = torch.hub.load('pytorch/vision:v0.9.0', 'vgg11_bn', pretrained=True) # model = torch.hub.load('pytorch/vision:v0.9.0', 'vgg13', pretrained=True) # model = torch.hub.load('pytorch/vision:v0.9.0', 'vgg13_bn', pretrained=True) # model = torch.hub.load('pytorch/vision:v0.9.0', 'vgg16', pretrained=True) # model = torch.hub.load('pytorch/vision:v0.9.0', 'vgg16_bn', pretrained=True) # model = torch.hub.load('pytorch/vision:v0.9.0', 'vgg19', pretrained=True) # model = torch.hub.load('pytorch/vision:v0.9.0', 'vgg19_bn', pretrained=True) model.eval() def inference(input_image): preprocess = transforms.Compose([ transforms.Resize(256), transforms.CenterCrop(224), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), ]) input_tensor = preprocess(input_image) input_batch = input_tensor.unsqueeze(0) # create a mini-batch as expected by the model # move the input and model to GPU for speed if available if torch.cuda.is_available(): input_batch = input_batch.to('cuda') model.to('cuda') with torch.no_grad(): output = model(input_batch) # The output has unnormalized scores. To get probabilities, you can run a softmax on it. probabilities = torch.nn.functional.softmax(output[0], dim=0) # Read the categories with open("imagenet_classes.txt", "r") as f: categories = [s.strip() for s in f.readlines()] # Show top categories per image top5_prob, top5_catid = torch.topk(probabilities, 5) result = {} for i in range(top5_prob.size(0)): result[categories[top5_catid[i]]] = top5_prob[i].item() return result inputs = gr.inputs.Image(type='pil') outputs = gr.outputs.Label(type="confidences",num_top_classes=5) title = "VGG-NETS" description = "Gradio demo for VGG-NETS, Award winning ConvNets from 2014 Imagenet ILSVRC challenge. To use it, simply upload your image, or click one of the examples to load them. Read more at the links below." article = "
Very Deep Convolutional Networks for Large-Scale Image Recognition | Github Repo
" examples = [ ['dog.jpg'] ] gr.Interface(inference, inputs, outputs, title=title, description=description, article=article, examples=examples, analytics_enabled=False).launch()