Spaces:
Running
on
A10G
Running
on
A10G
File size: 4,565 Bytes
f8ea2c9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 |
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.nn import init as init
from torch.nn.modules.batchnorm import _BatchNorm
from insir_models.nafnet_utils import Local_Base, LayerNorm2d
from insir_models.nafnet import SimpleGate, NAFBlock
class ICB(nn.Module):
"""
Instruction Condition Block (ICB)
Paper Section 3.3
"""
def __init__(self, feature_dim, text_dim=768):
super(ICB, self).__init__()
self.fc = nn.Linear(text_dim, feature_dim)
self.block = NAFBlock(feature_dim)
self.beta = nn.Parameter(torch.zeros((1, feature_dim, 1, 1)), requires_grad=True)
self.gamma = nn.Parameter(torch.zeros((1, feature_dim, 1, 1)), requires_grad=True)
def forward(self, x, text_embedding):
gating_factors = torch.sigmoid(self.fc(text_embedding))
gating_factors = gating_factors.unsqueeze(-1).unsqueeze(-1)
f = x * self.gamma + self.beta # 1) learned feature scaling/modulation
f = f * gating_factors # 2) (soft) feature routing based on text
f = self.block(f) # 3) block feature enhancement
return f + x
class InstructIR(nn.Module):
"""
InstructIR model using NAFNet (ECCV 2022) as backbone.
The model takes as input an RGB image and a text embedding (encoded instruction).
Described in Paper Section 3.3
"""
def __init__(self, img_channel=3, width=16, middle_blk_num=1, enc_blk_nums=[], dec_blk_nums=[], txtdim=768):
super().__init__()
self.intro = nn.Conv2d(in_channels=img_channel, out_channels=width, kernel_size=3, padding=1, stride=1, groups=1,
bias=True)
self.ending = nn.Conv2d(in_channels=width, out_channels=img_channel, kernel_size=3, padding=1, stride=1, groups=1,
bias=True)
self.encoders = nn.ModuleList()
self.decoders = nn.ModuleList()
self.middle_blks = nn.ModuleList()
self.ups = nn.ModuleList()
self.downs = nn.ModuleList()
self.enc_cond = nn.ModuleList()
self.dec_cond = nn.ModuleList()
chan = width
for num in enc_blk_nums:
self.encoders.append(
nn.Sequential(
*[NAFBlock(chan) for _ in range(num)]
)
)
self.enc_cond.append(ICB(chan, txtdim))
self.downs.append(
nn.Conv2d(chan, 2*chan, 2, 2)
)
chan = chan * 2
self.middle_blks = nn.Sequential(
*[NAFBlock(chan) for _ in range(middle_blk_num)]
)
for num in dec_blk_nums:
self.ups.append(
nn.Sequential(
nn.Conv2d(chan, chan * 2, 1, bias=False),
nn.PixelShuffle(2)
)
)
chan = chan // 2
self.decoders.append(
nn.Sequential(
*[NAFBlock(chan) for _ in range(num)]
)
)
# Add text embedding as modulation
self.dec_cond.append(ICB(chan, txtdim))
self.padder_size = 2 ** len(self.encoders)
def forward(self, inp, txtembd):
B, C, H, W = inp.shape
inp = self.check_image_size(inp)
x = self.intro(inp)
encs = []
for encoder, enc_mod, down in zip(self.encoders, self.enc_cond, self.downs):
x = encoder(x)
x = enc_mod(x, txtembd)
encs.append(x)
x = down(x)
x = self.middle_blks(x)
for decoder, up, enc_skip, dec_mod in zip(self.decoders, self.ups, encs[::-1], self.dec_cond):
x = up(x)
x = x + enc_skip
x = decoder(x)
x = dec_mod(x, txtembd)
x = self.ending(x)
x = x + inp
return x[:, :, :H, :W]
def check_image_size(self, x):
_, _, h, w = x.size()
mod_pad_h = (self.padder_size - h % self.padder_size) % self.padder_size
mod_pad_w = (self.padder_size - w % self.padder_size) % self.padder_size
x = F.pad(x, (0, mod_pad_w, 0, mod_pad_h))
return x
def create_model(input_channels = 3, width = 32, enc_blks = [2, 2, 4, 8], middle_blk_num = 12, dec_blks = [2, 2, 2, 2], txtdim=768):
net = InstructIR(img_channel=input_channels, width=width, middle_blk_num=middle_blk_num,
enc_blk_nums=enc_blks, dec_blk_nums=dec_blks, txtdim=txtdim)
return net |