Spaces:
Running
on
A10G
Running
on
A10G
import math | |
from typing import Any, Optional, Tuple, Union | |
from transformers.modeling_outputs import BaseModelOutput, BaseModelOutputWithPooling, BaseModelOutputWithPastAndCrossAttentions | |
from transformers.modeling_utils import PreTrainedModel | |
from transformers.pytorch_utils import find_pruneable_heads_and_indices, prune_linear_layer | |
import numpy as np | |
import torch | |
import torch.nn as nn | |
import torch.utils.checkpoint | |
from icecream import ic | |
def get_abs_pos(abs_pos, tgt_size): | |
# abs_pos: L, C | |
# tgt_size: M | |
# return: M, C | |
src_size = int(math.sqrt(abs_pos.size(0))) | |
tgt_size = int(math.sqrt(tgt_size)) | |
dtype = abs_pos.dtype | |
if src_size != tgt_size: | |
return F.interpolate( | |
abs_pos.float().reshape(1, src_size, src_size, -1).permute(0, 3, 1, 2), | |
size=(tgt_size, tgt_size), | |
mode="bicubic", | |
align_corners=False, | |
).permute(0, 2, 3, 1).flatten(0, 2).to(dtype=dtype) | |
else: | |
return abs_pos | |
# https://github.com/facebookresearch/mae/blob/efb2a8062c206524e35e47d04501ed4f544c0ae8/util/pos_embed.py#L20 | |
def get_2d_sincos_pos_embed(embed_dim, grid_size, cls_token=False): | |
""" | |
grid_size: int of the grid height and width | |
return: | |
pos_embed: [grid_size*grid_size, embed_dim] or [1+grid_size*grid_size, embed_dim] (w/ or w/o cls_token) | |
""" | |
grid_h = np.arange(grid_size, dtype=np.float32) | |
grid_w = np.arange(grid_size, dtype=np.float32) | |
grid = np.meshgrid(grid_w, grid_h) # here w goes first | |
grid = np.stack(grid, axis=0) | |
grid = grid.reshape([2, 1, grid_size, grid_size]) | |
pos_embed = get_2d_sincos_pos_embed_from_grid(embed_dim, grid) | |
if cls_token: | |
pos_embed = np.concatenate([np.zeros([1, embed_dim]), pos_embed], axis=0) | |
return pos_embed | |
def get_2d_sincos_pos_embed_from_grid(embed_dim, grid): | |
assert embed_dim % 2 == 0 | |
# use half of dimensions to encode grid_h | |
emb_h = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[0]) # (H*W, D/2) | |
emb_w = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[1]) # (H*W, D/2) | |
emb = np.concatenate([emb_h, emb_w], axis=1) # (H*W, D) | |
return emb | |
def get_1d_sincos_pos_embed_from_grid(embed_dim, pos): | |
""" | |
embed_dim: output dimension for each position | |
pos: a list of positions to be encoded: size (M,) | |
out: (M, D) | |
""" | |
assert embed_dim % 2 == 0 | |
omega = np.arange(embed_dim // 2, dtype=np.float32) | |
omega /= embed_dim / 2. | |
omega = 1. / 10000**omega # (D/2,) | |
pos = pos.reshape(-1) # (M,) | |
out = np.einsum('m,d->md', pos, omega) # (M, D/2), outer product | |
emb_sin = np.sin(out) # (M, D/2) | |
emb_cos = np.cos(out) # (M, D/2) | |
emb = np.concatenate([emb_sin, emb_cos], axis=1) # (M, D) | |
return emb | |
class MplugOwlVisionEmbeddings(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.config = config | |
self.hidden_size = config.hidden_size | |
self.image_size = config.image_size | |
self.patch_size = config.patch_size | |
self.cls_token = nn.Parameter(torch.randn(1, 1, self.hidden_size)) | |
self.patch_embed = nn.Conv2d( | |
in_channels=3, | |
out_channels=self.hidden_size, | |
kernel_size=self.patch_size, | |
stride=self.patch_size, | |
bias=False, | |
) | |
self.num_patches = (self.image_size // self.patch_size) ** 2 | |
self.position_embedding = nn.Parameter(torch.randn(1, self.num_patches + 1, self.hidden_size)) | |
self.pre_layernorm = nn.LayerNorm(self.hidden_size, eps=config.layer_norm_eps) | |
def forward(self, pixel_values: torch.FloatTensor) -> torch.Tensor: | |
batch_size = pixel_values.size(0) | |
image_embeds = self.patch_embed(pixel_values) | |
image_embeds = image_embeds.flatten(2).transpose(1, 2) | |
class_embeds = self.cls_token.expand(batch_size, 1, -1).to(image_embeds.dtype) | |
embeddings = torch.cat([class_embeds, image_embeds], dim=1) | |
embeddings = embeddings + self.position_embedding[:, : embeddings.size(1)].to(image_embeds.dtype) | |
embeddings = self.pre_layernorm(embeddings) | |
return embeddings | |
class MplugOwlVisionAttention(nn.Module): | |
"""Multi-headed attention from 'Attention Is All You Need' paper""" | |
def __init__(self, config): | |
super().__init__() | |
self.config = config | |
self.hidden_size = config.hidden_size | |
self.num_heads = config.num_attention_heads | |
self.head_dim = self.hidden_size // self.num_heads | |
if self.head_dim * self.num_heads != self.hidden_size: | |
raise ValueError( | |
f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size} and `num_heads`:" | |
f" {self.num_heads})." | |
) | |
self.scale = self.head_dim**-0.5 | |
self.dropout = nn.Dropout(config.attention_dropout) | |
self.query_key_value = nn.Linear(self.hidden_size, 3 * self.hidden_size) | |
self.dense = nn.Linear(self.hidden_size, self.hidden_size) | |
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int): | |
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous() | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
head_mask: Optional[torch.Tensor] = None, | |
output_attentions: Optional[bool] = False, | |
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: | |
"""Input shape: Batch x Time x Channel""" | |
bsz, seq_len, embed_dim = hidden_states.size() | |
mixed_qkv = self.query_key_value(hidden_states) | |
mixed_qkv = mixed_qkv.reshape(bsz, seq_len, self.num_heads, 3, embed_dim // self.num_heads).permute( | |
3, 0, 2, 1, 4 | |
) # [3, b, np, sq, hn] | |
query_states, key_states, value_states = ( | |
mixed_qkv[0], | |
mixed_qkv[1], | |
mixed_qkv[2], | |
) | |
# if self.config.use_flash_attn and flash_attn_func is not None: | |
if False: | |
# [b*sq, np, hn] | |
query_states = query_states.permute(0, 2, 1, 3).contiguous() | |
query_states = query_states.view(query_states.size(0) * query_states.size(1), query_states.size(2), -1) | |
key_states = key_states.permute(0, 2, 1, 3).contiguous() | |
key_states = key_states.view(key_states.size(0) * key_states.size(1), key_states.size(2), -1) | |
value_states = value_states.permute(0, 2, 1, 3).contiguous() | |
value_states = value_states.view(value_states.size(0) * value_states.size(1), value_states.size(2), -1) | |
cu_seqlens = torch.arange( | |
0, (bsz + 1) * seq_len, step=seq_len, dtype=torch.int32, device=query_states.device | |
) | |
context_layer = flash_attn_func( | |
query_states, | |
key_states, | |
value_states, | |
cu_seqlens, | |
cu_seqlens, | |
seq_len, | |
seq_len, | |
self.dropout if self.training else 0.0, | |
softmax_scale=self.scale, | |
causal=False, | |
return_attn_probs=False, | |
) | |
# [b*sq, np, hn] => [b, sq, np, hn] | |
context_layer = context_layer.view(bsz, seq_len, context_layer.size(1), context_layer.size(2)) | |
else: | |
# Take the dot product between "query" and "key" to get the raw attention scores. | |
attention_scores = torch.matmul(query_states, key_states.transpose(-1, -2)) | |
attention_scores = attention_scores * self.scale | |
# Normalize the attention scores to probabilities. | |
attention_probs = torch.softmax(attention_scores, dim=-1) | |
# This is actually dropping out entire tokens to attend to, which might | |
# seem a bit unusual, but is taken from the original Transformer paper. | |
attention_probs = self.dropout(attention_probs) | |
# Mask heads if we want to | |
if head_mask is not None: | |
attention_probs = attention_probs * head_mask | |
context_layer = torch.matmul(attention_probs, value_states).permute(0, 2, 1, 3) | |
new_context_layer_shape = context_layer.size()[:-2] + (self.hidden_size,) | |
context_layer = context_layer.reshape(new_context_layer_shape) | |
output = self.dense(context_layer) | |
outputs = (output, attention_probs) if output_attentions else (output, None) | |
return outputs | |
class QuickGELU(nn.Module): | |
def forward(self, x: torch.Tensor): | |
return x * torch.sigmoid(1.702 * x) | |
class MplugOwlMLP(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.config = config | |
self.activation_fn = QuickGELU() | |
self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size) | |
self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size) | |
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: | |
hidden_states = self.fc1(hidden_states) | |
hidden_states = self.activation_fn(hidden_states) | |
hidden_states = self.fc2(hidden_states) | |
return hidden_states | |
class MplugOwlVisionEncoderLayer(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.hidden_size = config.hidden_size | |
self.self_attn = MplugOwlVisionAttention(config) | |
self.input_layernorm = nn.LayerNorm(self.hidden_size, eps=config.layer_norm_eps) | |
self.mlp = MplugOwlMLP(config) | |
self.post_attention_layernorm = nn.LayerNorm(self.hidden_size, eps=config.layer_norm_eps) | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
attention_mask: torch.Tensor, | |
output_attentions: Optional[bool] = False, | |
) -> Tuple[torch.FloatTensor]: | |
""" | |
Args: | |
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` | |
attention_mask (`torch.FloatTensor`): attention mask of size | |
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. | |
`(config.encoder_attention_heads,)`. | |
output_attentions (`bool`, *optional*): | |
Whether or not to return the attentions tensors of all attention layers. See `attentions` under | |
returned tensors for more detail. | |
""" | |
residual = hidden_states | |
hidden_states = self.input_layernorm(hidden_states) | |
hidden_states, attn_weights = self.self_attn( | |
hidden_states=hidden_states, | |
head_mask=attention_mask, | |
output_attentions=output_attentions, | |
) | |
hidden_states = hidden_states + residual | |
residual = hidden_states | |
hidden_states = self.post_attention_layernorm(hidden_states) | |
hidden_states = self.mlp(hidden_states) | |
hidden_states = hidden_states + residual | |
outputs = (hidden_states,) | |
if output_attentions: | |
outputs += (attn_weights,) | |
return outputs | |
class MplugOwlVisionEncoder(nn.Module): | |
""" | |
Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a | |
[`MplugOwlVisionEncoderLayer`]. | |
Args: | |
config (`MplugOwlVisionConfig`): | |
The corresponding vision configuration for the `MplugOwlEncoder`. | |
""" | |
def __init__(self, config): | |
super().__init__() | |
self.config = config | |
self.layers = nn.ModuleList([MplugOwlVisionEncoderLayer(config) for _ in range(config.num_hidden_layers)]) | |
self.gradient_checkpointing = True | |
def forward( | |
self, | |
inputs_embeds, | |
attention_mask: Optional[torch.Tensor] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
) -> Union[Tuple, BaseModelOutput]: | |
r""" | |
Args: | |
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): | |
Embedded representation of the inputs. Should be float, not int tokens. | |
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): | |
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: | |
- 1 for tokens that are **not masked**, | |
- 0 for tokens that are **masked**. | |
[What are attention masks?](../glossary#attention-mask) | |
output_attentions (`bool`, *optional*): | |
Whether or not to return the attentions tensors of all attention layers. See `attentions` under | |
returned tensors for more detail. | |
output_hidden_states (`bool`, *optional*): | |
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors | |
for more detail. | |
return_dict (`bool`, *optional*): | |
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. | |
""" | |
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | |
output_hidden_states = ( | |
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | |
) | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
encoder_states = () if output_hidden_states else None | |
all_attentions = () if output_attentions else None | |
hidden_states = inputs_embeds | |
for idx, encoder_layer in enumerate(self.layers): | |
if output_hidden_states: | |
encoder_states = encoder_states + (hidden_states,) | |
if self.gradient_checkpointing and self.training: | |
def create_custom_forward(module): | |
def custom_forward(*inputs): | |
return module(*inputs, output_attentions) | |
return custom_forward | |
layer_outputs = torch.utils.checkpoint.checkpoint( | |
create_custom_forward(encoder_layer), | |
hidden_states, | |
attention_mask, | |
) | |
else: | |
layer_outputs = encoder_layer( | |
hidden_states, | |
attention_mask, | |
output_attentions=output_attentions, | |
) | |
hidden_states = layer_outputs[0] | |
if output_attentions: | |
all_attentions = all_attentions + (layer_outputs[1],) | |
if output_hidden_states: | |
encoder_states = encoder_states + (hidden_states,) | |
if not return_dict: | |
return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None) | |
return BaseModelOutput( | |
last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions | |
) | |
class MplugOwlVisionModel(PreTrainedModel): | |
main_input_name = "pixel_values" | |
def __init__(self, config): | |
super().__init__(config) | |
self.config = config | |
self.hidden_size = config.hidden_size | |
self.embeddings = MplugOwlVisionEmbeddings(config) | |
self.encoder = MplugOwlVisionEncoder(config) | |
self.post_layernorm = nn.LayerNorm(self.hidden_size, eps=config.layer_norm_eps) | |
self.post_init() | |
def forward( | |
self, | |
pixel_values: Optional[torch.FloatTensor] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
) -> Union[Tuple, BaseModelOutputWithPooling]: | |
r""" | |
Returns: | |
""" | |
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | |
output_hidden_states = ( | |
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | |
) | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
if pixel_values is None: | |
raise ValueError("You have to specify pixel_values") | |
hidden_states = self.embeddings(pixel_values) | |
encoder_outputs = self.encoder( | |
inputs_embeds=hidden_states, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
last_hidden_state = encoder_outputs[0] | |
last_hidden_state = self.post_layernorm(last_hidden_state) | |
pooled_output = last_hidden_state[:, 0, :] | |
pooled_output = self.post_layernorm(pooled_output) | |
if not return_dict: | |
return (last_hidden_state, pooled_output) + encoder_outputs[1:] | |
return BaseModelOutputWithPooling( | |
last_hidden_state=last_hidden_state, | |
pooler_output=pooled_output, | |
hidden_states=encoder_outputs.hidden_states, | |
attentions=encoder_outputs.attentions, | |
) | |
def get_input_embeddings(self): | |
return self.embeddings | |
class MplugOwlVisualAbstractorMLP(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.config = config | |
in_features = config.hidden_size | |
self.act = nn.SiLU() | |
self.w1 = nn.Linear(in_features, config.intermediate_size) | |
self.w2 = nn.Linear(config.intermediate_size, in_features) | |
self.w3 = nn.Linear(in_features, config.intermediate_size) | |
self.ffn_ln = nn.LayerNorm(config.intermediate_size, eps=config.layer_norm_eps) | |
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: | |
hidden_states = self.act(self.w1(hidden_states)) * self.w3(hidden_states) | |
hidden_states = self.ffn_ln(hidden_states) | |
hidden_states = self.w2(hidden_states) | |
return hidden_states | |
class MplugOwlVisualAbstractorMultiHeadAttention(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.config = config | |
if config.hidden_size % config.num_attention_heads != 0: | |
raise ValueError( | |
"The hidden size (%d) is not a multiple of the number of attention heads (%d)" | |
% (config.hidden_size, config.num_attention_heads) | |
) | |
self.num_attention_heads = config.num_attention_heads | |
self.attention_head_size = int(config.hidden_size / config.num_attention_heads) | |
self.all_head_size = self.num_attention_heads * self.attention_head_size | |
self.query = nn.Linear(config.hidden_size, self.all_head_size) | |
self.key = nn.Linear(config.encoder_hidden_size, self.all_head_size) | |
self.value = nn.Linear(config.encoder_hidden_size, self.all_head_size) | |
self.dropout = nn.Dropout(config.attention_probs_dropout_prob) | |
self.save_attention = False | |
# self.q_pos_embed = nn.Parameter( | |
# torch.from_numpy(get_1d_sincos_pos_embed_from_grid(config.hidden_size, np.arange(config.num_learnable_queries, dtype=np.float32))).float() | |
# ).requires_grad_(False) | |
# grids = config.grid_size | |
# self.k_pos_embed = nn.Parameter( | |
# torch.from_numpy(get_2d_sincos_pos_embed(config.hidden_size, grids, cls_token=True)).float() | |
# ).requires_grad_(False) | |
grids = config.grid_size | |
self.register_buffer( | |
'q_pos_embed', | |
torch.from_numpy(get_1d_sincos_pos_embed_from_grid(config.hidden_size, np.arange(config.num_learnable_queries, dtype=np.float32))).float() | |
) | |
self.register_buffer( | |
'k_pos_embed', | |
torch.from_numpy(get_2d_sincos_pos_embed(config.hidden_size, grids, cls_token=True)).float() | |
) | |
def save_attn_gradients(self, attn_gradients): | |
self.attn_gradients = attn_gradients | |
def get_attn_gradients(self): | |
return self.attn_gradients | |
def save_attention_map(self, attention_map): | |
self.attention_map = attention_map | |
def get_attention_map(self): | |
return self.attention_map | |
def transpose_for_scores(self, x): | |
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size) | |
x = x.view(*new_x_shape) | |
return x.permute(0, 2, 1, 3) | |
def forward( | |
self, | |
hidden_states, | |
attention_mask=None, | |
head_mask=None, | |
encoder_hidden_states=None, | |
encoder_attention_mask=None, | |
past_key_value=None, | |
output_attentions=False, | |
): | |
# If this is instantiated as a cross-attention module, the keys | |
# and values come from an encoder; the attention mask needs to be | |
# such that the encoder's padding tokens are not attended to. | |
qk_pos_embed = torch.cat([self.q_pos_embed, self.k_pos_embed], dim = 0).unsqueeze(0).to(dtype=hidden_states.dtype) | |
key_layer = self.transpose_for_scores(self.key(encoder_hidden_states + qk_pos_embed)) | |
value_layer = self.transpose_for_scores(self.value(encoder_hidden_states)) | |
attention_mask = encoder_attention_mask | |
mixed_query_layer = self.query(hidden_states + self.q_pos_embed.unsqueeze(0).to(dtype=hidden_states.dtype)) | |
query_layer = self.transpose_for_scores(mixed_query_layer) | |
past_key_value = (key_layer, value_layer) | |
# Take the dot product between "query" and "key" to get the raw attention scores. | |
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) | |
attention_scores = attention_scores / math.sqrt(self.attention_head_size) | |
if attention_mask is not None: | |
# Apply the attention mask is (precomputed for all layers in BertModel forward() function) | |
attention_scores = attention_scores + attention_mask | |
# Normalize the attention scores to probabilities. | |
attention_probs = nn.Softmax(dim=-1)(attention_scores) | |
if self.save_attention: | |
self.save_attention_map(attention_probs) | |
attention_probs.register_hook(self.save_attn_gradients) | |
# This is actually dropping out entire tokens to attend to, which might | |
# seem a bit unusual, but is taken from the original Transformer paper. | |
attention_probs_dropped = self.dropout(attention_probs) | |
# Mask heads if we want to | |
if head_mask is not None: | |
attention_probs_dropped = attention_probs_dropped * head_mask | |
context_layer = torch.matmul(attention_probs_dropped, value_layer) | |
context_layer = context_layer.permute(0, 2, 1, 3).contiguous() | |
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) | |
context_layer = context_layer.view(*new_context_layer_shape) | |
outputs = (context_layer, attention_probs) if output_attentions else (context_layer,) | |
outputs = outputs + (past_key_value,) | |
return outputs | |
class MplugOwlVisualAbstractorCrossOutput(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
dim = config.hidden_size | |
self.out_proj = nn.Linear(dim, dim, bias=True) | |
self.norm2 = nn.LayerNorm(dim) | |
self.mlp = MplugOwlVisualAbstractorMLP(config) | |
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: | |
input_tensor = input_tensor + self.out_proj(hidden_states) | |
input_tensor = input_tensor + self.mlp(self.norm2(input_tensor)) | |
return input_tensor | |
class MplugOwlVisualAbstractorAttention(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.attention = MplugOwlVisualAbstractorMultiHeadAttention(config) | |
self.output = MplugOwlVisualAbstractorCrossOutput(config) | |
self.pruned_heads = set() | |
self.norm1 = nn.LayerNorm(config.hidden_size) | |
self.normk = nn.LayerNorm(config.hidden_size) | |
def prune_heads(self, heads): | |
if len(heads) == 0: | |
return | |
heads, index = find_pruneable_heads_and_indices( | |
heads, self.attention.num_attention_heads, self.attention.attention_head_size, self.pruned_heads | |
) | |
# Prune linear layers | |
self.attention.query = prune_linear_layer(self.attention.query, index) | |
self.attention.key = prune_linear_layer(self.attention.key, index) | |
self.attention.value = prune_linear_layer(self.attention.value, index) | |
self.output.dense = prune_linear_layer(self.output.out_proj, index, dim=1) | |
# Update hyper params and store pruned heads | |
self.attention.num_attention_heads = self.attention.num_attention_heads - len(heads) | |
self.attention.all_head_size = self.attention.attention_head_size * self.attention.num_attention_heads | |
self.pruned_heads = self.pruned_heads.union(heads) | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
attention_mask: Optional[torch.FloatTensor] = None, | |
head_mask: Optional[torch.FloatTensor] = None, | |
encoder_hidden_states: Optional[torch.FloatTensor] = None, | |
encoder_attention_mask: Optional[torch.FloatTensor] = None, | |
past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, | |
output_attentions: Optional[bool] = False, | |
) -> Tuple[torch.Tensor]: | |
# HACK we apply norm on q and k | |
hidden_states = self.norm1(hidden_states) | |
encoder_hidden_states = self.normk(encoder_hidden_states) | |
encoder_hidden_states = torch.cat([hidden_states, encoder_hidden_states], dim=1) | |
encoder_attention_mask = torch.cat([attention_mask, encoder_attention_mask], dim=-1) | |
self_outputs = self.attention( | |
hidden_states, | |
attention_mask, | |
head_mask, | |
encoder_hidden_states, | |
encoder_attention_mask, | |
past_key_value, | |
output_attentions, | |
) | |
attention_output = self.output(self_outputs[0], hidden_states) | |
# add attentions if we output them | |
outputs = (attention_output,) + self_outputs[1:] | |
return outputs | |
class MplugOwlVisualAbstractorLayer(nn.Module): | |
def __init__(self, config, layer_idx): | |
super().__init__() | |
self.chunk_size_feed_forward = config.chunk_size_feed_forward | |
self.seq_len_dim = 1 | |
self.layer_idx = layer_idx | |
self.crossattention = MplugOwlVisualAbstractorAttention(config) | |
self.has_cross_attention = True | |
def forward( | |
self, | |
hidden_states, | |
attention_mask=None, | |
head_mask=None, | |
encoder_hidden_states=None, | |
encoder_attention_mask=None, | |
output_attentions=False, | |
): | |
if encoder_hidden_states is None: | |
raise ValueError("encoder_hidden_states must be given for cross-attention layers") | |
cross_attention_outputs = self.crossattention( | |
hidden_states, | |
attention_mask, | |
head_mask, | |
encoder_hidden_states, | |
encoder_attention_mask, | |
output_attentions=output_attentions, | |
) | |
query_attention_output = cross_attention_outputs[0] | |
outputs = (query_attention_output,) | |
return outputs | |
class MplugOwlVisualAbstractorEncoder(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.config = config | |
self.layers = nn.ModuleList( | |
[MplugOwlVisualAbstractorLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] | |
) | |
self.gradient_checkpointing = True | |
def forward( | |
self, | |
hidden_states, | |
attention_mask=None, | |
head_mask=None, | |
encoder_hidden_states=None, | |
encoder_attention_mask=None, | |
past_key_values=None, | |
output_attentions=False, | |
output_hidden_states=False, | |
return_dict=True, | |
): | |
all_hidden_states = () if output_hidden_states else None | |
for i in range(self.config.num_hidden_layers): | |
layer_module = self.layers[i] | |
if output_hidden_states: | |
all_hidden_states = all_hidden_states + (hidden_states,) | |
layer_head_mask = head_mask[i] if head_mask is not None else None | |
past_key_value = past_key_values[i] if past_key_values is not None else None | |
if getattr(self.config, "gradient_checkpointing", False) and self.training: | |
def create_custom_forward(module): | |
def custom_forward(*inputs): | |
return module(*inputs, past_key_value, output_attentions) | |
return custom_forward | |
layer_outputs = torch.utils.checkpoint.checkpoint( | |
create_custom_forward(layer_module), | |
hidden_states, | |
attention_mask, | |
layer_head_mask, | |
encoder_hidden_states, | |
encoder_attention_mask, | |
) | |
else: | |
layer_outputs = layer_module( | |
hidden_states, | |
attention_mask, | |
layer_head_mask, | |
encoder_hidden_states, | |
encoder_attention_mask, | |
output_attentions, | |
) | |
hidden_states = layer_outputs[0] | |
return BaseModelOutput( | |
last_hidden_state=hidden_states, | |
) | |
class MplugOwlVisualAbstractorModel(PreTrainedModel): | |
def __init__(self, config, language_hidden_size): | |
super().__init__(config) | |
self.config = config | |
self.encoder = MplugOwlVisualAbstractorEncoder(config) | |
self.visual_fc = torch.nn.Linear(config.hidden_size, language_hidden_size) | |
self.query_embeds = torch.nn.Parameter(torch.randn(1, config.num_learnable_queries, config.hidden_size)) | |
self.vit_eos = torch.nn.Parameter(torch.randn(1, 1, language_hidden_size)) | |
self.post_init() | |
def _prune_heads(self, heads_to_prune): | |
""" | |
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base | |
class PreTrainedModel | |
""" | |
for layer, heads in heads_to_prune.items(): | |
self.encoder.layer[layer].attention.prune_heads(heads) | |
def get_extended_attention_mask( | |
self, | |
attention_mask: torch.Tensor, | |
input_shape: Tuple[int], | |
device: torch.device, | |
) -> torch.Tensor: | |
""" | |
Makes broadcastable attention and causal masks so that future and masked tokens are ignored. | |
Arguments: | |
attention_mask (`torch.Tensor`): | |
Mask with ones indicating tokens to attend to, zeros for tokens to ignore. | |
input_shape (`Tuple[int]`): | |
The shape of the input to the model. | |
device: (`torch.device`): | |
The device of the input to the model. | |
Returns: | |
`torch.Tensor` The extended attention mask, with a the same dtype as `attention_mask.dtype`. | |
""" | |
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] | |
# ourselves in which case we just need to make it broadcastable to all heads. | |
if attention_mask.dim() == 3: | |
extended_attention_mask = attention_mask[:, None, :, :] | |
elif attention_mask.dim() == 2: | |
# Provided a padding mask of dimensions [batch_size, seq_length] | |
# - the model is an encoder, so make the mask broadcastable to [batch_size, num_heads, seq_length, seq_length] | |
extended_attention_mask = attention_mask[:, None, None, :] | |
else: | |
raise ValueError( | |
"Wrong shape for input_ids (shape {}) or attention_mask (shape {})".format( | |
input_shape, attention_mask.shape | |
) | |
) | |
# Since attention_mask is 1.0 for positions we want to attend and 0.0 for | |
# masked positions, this operation will create a tensor which is 0.0 for | |
# positions we want to attend and -10000.0 for masked positions. | |
# Since we are adding it to the raw scores before the softmax, this is | |
# effectively the same as removing these entirely. | |
extended_attention_mask = extended_attention_mask.to(dtype=self.dtype) # fp16 compatibility | |
extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0 | |
return extended_attention_mask | |
def forward( | |
self, | |
attention_mask=None, | |
head_mask=None, | |
encoder_hidden_states=None, | |
encoder_attention_mask=None, | |
past_key_values=None, | |
output_attentions=None, | |
output_hidden_states=None, | |
return_dict=None, | |
): | |
r""" | |
encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, `optional`): | |
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if | |
the model is configured as a decoder. | |
encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, `optional`): | |
Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in | |
the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`: | |
- 1 for tokens that are **not masked**, | |
- 0 for tokens that are **masked**. | |
past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of: | |
shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): Contains precomputed key and | |
value hidden states of the attention blocks. Can be used to speed up decoding. If `past_key_values` are | |
used, the user can optionally input only the last `decoder_input_ids` (those that don't have their past key | |
value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape | |
`(batch_size, sequence_length)`. | |
""" | |
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | |
output_hidden_states = ( | |
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | |
) | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
query_embeds = self.query_embeds.repeat(encoder_hidden_states.shape[0], 1, 1) | |
embedding_output = query_embeds | |
input_shape = embedding_output.size()[:-1] | |
batch_size, seq_length = input_shape | |
device = embedding_output.device | |
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] | |
# ourselves in which case we just need to make it broadcastable to all heads. | |
if attention_mask is None: | |
attention_mask = torch.ones( | |
(query_embeds.shape[0], query_embeds.shape[1]), dtype=torch.long, device=query_embeds.device | |
) | |
extended_attention_mask = self.get_extended_attention_mask(attention_mask, input_shape, device) | |
# If a 2D or 3D attention mask is provided for the cross-attention | |
# we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] | |
if encoder_hidden_states is not None: | |
if type(encoder_hidden_states) == list: | |
encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states[0].size() | |
else: | |
( | |
encoder_batch_size, | |
encoder_sequence_length, | |
_, | |
) = encoder_hidden_states.size() | |
encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length) | |
if type(encoder_attention_mask) == list: | |
encoder_extended_attention_mask = [self.invert_attention_mask(mask) for mask in encoder_attention_mask] | |
elif encoder_attention_mask is None: | |
encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device) | |
encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask) | |
else: | |
encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask) | |
else: | |
encoder_extended_attention_mask = None | |
# Prepare head mask if needed | |
# 1.0 in head_mask indicate we keep the head | |
# attention_probs has shape bsz x n_heads x N x N | |
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] | |
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] | |
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers) | |
encoder_outputs = self.encoder( | |
embedding_output, | |
attention_mask=extended_attention_mask, | |
head_mask=head_mask, | |
encoder_hidden_states=encoder_hidden_states, | |
encoder_attention_mask=encoder_extended_attention_mask, | |
past_key_values=past_key_values, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
sequence_output = encoder_outputs[0] | |
pooled_output = sequence_output[:, 0, :] | |
sequence_output = self.visual_fc(sequence_output) | |
sequence_output = torch.cat([sequence_output, self.vit_eos.repeat(sequence_output.shape[0], 1, 1)], dim=1) | |
return BaseModelOutputWithPooling( | |
last_hidden_state=sequence_output, | |
pooler_output=pooled_output, | |
hidden_states=encoder_outputs.hidden_states, | |
) | |
if __name__ == "__main__": | |
from configuration_mplug_owl2 import MPLUGOwl2Config | |
config = MPLUGOwl2Config() | |
visual_model = MplugOwlVisionModel(config.visual_config["visual_model"]) | |
print(visual_model) | |
abstractor_module = MplugOwlVisualAbstractorModel(config.visual_config["visual_abstractor"], config.hidden_size) | |
print(abstractor_module) |