import os, yaml import gradio as gr import requests import argparse from PIL import Image import numpy as np import torch from transformers import AutoModelForCausalLM from huggingface_hub import hf_hub_download ## InstructIR Plugin ## from insir_models import instructir from insir_text.models import LanguageModel, LMHead hf_hub_download(repo_id="marcosv/InstructIR", filename="im_instructir-7d.pt", local_dir="./") hf_hub_download(repo_id="marcosv/InstructIR", filename="lm_instructir-7d.pt", local_dir="./") CONFIG = "eval5d.yml" LM_MODEL = "lm_instructir-7d.pt" MODEL_NAME = "im_instructir-7d.pt" def dict2namespace(config): namespace = argparse.Namespace() for key, value in config.items(): if isinstance(value, dict): new_value = dict2namespace(value) else: new_value = value setattr(namespace, key, new_value) return namespace # parse config file with open(os.path.join(CONFIG), "r") as f: config = yaml.safe_load(f) cfg = dict2namespace(config) device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu") ir_model = instructir.create_model(input_channels =cfg.model.in_ch, width=cfg.model.width, enc_blks = cfg.model.enc_blks, middle_blk_num = cfg.model.middle_blk_num, dec_blks = cfg.model.dec_blks, txtdim=cfg.model.textdim) ir_model = ir_model.to(device) print ("IMAGE MODEL CKPT:", MODEL_NAME) ir_model.load_state_dict(torch.load(MODEL_NAME, map_location="cpu"), strict=True) os.environ["TOKENIZERS_PARALLELISM"] = "false" LMODEL = cfg.llm.model language_model = LanguageModel(model=LMODEL) lm_head = LMHead(embedding_dim=cfg.llm.model_dim, hidden_dim=cfg.llm.embd_dim, num_classes=cfg.llm.nclasses) lm_head = lm_head.to(device) print("LMHEAD MODEL CKPT:", LM_MODEL) lm_head.load_state_dict(torch.load(LM_MODEL, map_location="cpu"), strict=True) def process_img(image, prompt=None): if prompt is None: prompt = chat("How to improve the quality of the image?", [], image, None, None, None) prompt += "Please help me improve its quality!" print(prompt) img = np.array(image) img = img / 255. img = img.astype(np.float32) y = torch.tensor(img).permute(2,0,1).unsqueeze(0).to(device) lm_embd = language_model(prompt) lm_embd = lm_embd.to(device) with torch.no_grad(): text_embd, deg_pred = lm_head(lm_embd) x_hat = ir_model(y, text_embd) restored_img = x_hat.squeeze().permute(1,2,0).clamp_(0, 1).cpu().detach().numpy() restored_img = np.clip(restored_img, 0. , 1.) restored_img = (restored_img * 255.0).round().astype(np.uint8) # float32 to uint8 return Image.fromarray(restored_img) #(image, Image.fromarray(restored_img)) ## InstructIR Plugin ## model = AutoModelForCausalLM.from_pretrained("q-future/co-instruct-preview", trust_remote_code=True, torch_dtype=torch.float16, attn_implementation="eager", device_map={"":"cuda:0"}) def chat(message, history, image_1, image_2, image_3, image_4): print(history) if history: if image_1 is not None and image_2 is None: past_message = "USER: The input image: <|image|>" + history[0][0] + " ASSISTANT:" + history[0][1] for i in range((len(history) - 1)): past_message += "USER:" +history[i][0] + " ASSISTANT:" + history[i][1] + "" message = past_message + "USER:" + message + " ASSISTANT:" images = [image_1] if image_1 is not None and image_2 is not None: if image_3 is None: past_message = "USER: The first image: <|image|>\nThe second image: <|image|>" + history[0][0] + " ASSISTANT:" + history[0][1] + "" for i in range((len(history) - 1)): past_message += "USER:" + history[i][0] + " ASSISTANT:" + history[i][1] + "" message = past_message + "USER:" + message + " ASSISTANT:" images = [image_1, image_2] else: if image_4 is None: past_message = "USER: The first image: <|image|>\nThe second image: <|image|>\nThe third image:<|image|>" + history[0][0] + " ASSISTANT:" + history[0][1] + "" for i in range((len(history) - 1)): past_message += "USER:" + history[i][0] + " ASSISTANT:" + history[i][1] + "" message = past_message + "USER:" + message + " ASSISTANT:" images = [image_1, image_2, image_3] else: past_message = "USER: The first image: <|image|>\nThe second image: <|image|>\nThe third image:<|image|>\nThe fourth image:<|image|>" + history[0][0] + " ASSISTANT:" + history[0][1] + "" for i in range((len(history) - 1)): past_message += "USER:" + history[i][0] + " ASSISTANT:" + history[i][1] + "" message = past_message + "USER:" + message + " ASSISTANT:" images = [image_1, image_2, image_3, image_4] else: if image_1 is not None and image_2 is None: message = "USER: The input image: <|image|>" + message + " ASSISTANT:" images = [image_1] if image_1 is not None and image_2 is not None: if image_3 is None: message = "USER: The first image: <|image|>\nThe second image: <|image|>" + message + " ASSISTANT:" images = [image_1, image_2] else: if image_4 is None: message = "USER: The first image: <|image|>\nThe second image: <|image|>\nThe third image:<|image|>" + message + " ASSISTANT:" images = [image_1, image_2, image_3] else: message = "USER: The first image: <|image|>\nThe second image: <|image|>\nThe third image:<|image|>\nThe fourth image:<|image|>" + message + " ASSISTANT:" images = [image_1, image_2, image_3, image_4] print(message) return model.tokenizer.batch_decode(model.chat(message, images, max_new_tokens=600).clamp(0, 100000))[0].split("ASSISTANT:")[-1] #### Image,Prompts examples examples = [ ["Which part of the image is relatively clearer, the upper part or the lower part? Please analyze in details.", "examples/sausage.jpg", None], ["Which image is noisy, and which one is with motion blur? Please analyze in details.", "examples/211.jpg", "examples/frog.png"], ["What is the problem in this image, and how to fix it? Please answer my questions one by one.", "examples/lol_748.png", None], ] title = "Q-Instruct🧑‍🏫" with gr.Blocks(title="img") as demo: title_markdown = ("""

Q-Instruct (mPLUG-Owl-2)

Q-Instruct: Improving Low-level Visual Abilities for Multi-modality Foundation Models

Super Version of Q-Instruct with Multi-image (up to 4, same as GPT-4V) Support! We also support InstructIR as PLUGIN!
Please find our more accurate visual scoring demo on [OneScorer]!
""") gr.Markdown(title_markdown) with gr.Row(): input_img_1 = gr.Image(type='pil', label="Image 1 (First image)") input_img_2 = gr.Image(type='pil', label="Image 2 (Second image)") input_img_3 = gr.Image(type='pil', label="Image 3 (Third image)") input_img_4 = gr.Image(type='pil', label="Image 4 (Third image)") with gr.Row(): with gr.Column(scale=2): gr.ChatInterface(fn = chat, additional_inputs=[input_img_1, input_img_2, input_img_3, input_img_4], examples=examples) with gr.Column(scale=1): input_image_ir = gr.Image(type="pil", label="Image for Auto Restoration") output_image_ir = gr.Image(type="pil", label="Output of Auto Restoration") gr.Interface( fn=process_img, inputs=[input_image_ir], outputs=[output_image_ir], examples=["examples/gopro.png", "examples/noise50.png", "examples/lol_748.png"], ) demo.launch(share=True)