paulparas commited on
Commit
301406d
·
1 Parent(s): 107f581

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +72 -0
app.py ADDED
@@ -0,0 +1,72 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import numpy as np
3
+ import os,requests
4
+ import matplotlib.pyplot as plt
5
+
6
+ API_URL = "https://api-inference.huggingface.co/models/ahmedrachid/FinancialBERT-Sentiment-Analysis"
7
+ API_TOKEN = os.environ['API_TOKEN']
8
+ headers = {"Authorization": f"Bearer {API_TOKEN}"}
9
+
10
+ def get_chart(score, color):
11
+ # Create figure and axis
12
+ fig, ax = plt.subplots(figsize=(3, 3), subplot_kw=dict(aspect="equal"))
13
+
14
+ # Create the pie chart, which looks like a donut
15
+ wedges, texts = ax.pie([score, 100-score], startangle=90, counterclock=False, colors=[color, '#dddddd'])
16
+
17
+ # Draw a white circle in the center
18
+ centre_circle = plt.Circle((0,0),0.85,fc='white')
19
+ fig.gca().add_artist(centre_circle)
20
+
21
+ # Equal aspect ratio ensures that pie is drawn as a circle.
22
+ ax.axis('equal')
23
+
24
+ # Add text in the center
25
+ plt.text(0, 0, f'{score}%', horizontalalignment='center', verticalalignment='center', fontsize=18, color=color)
26
+ return fig
27
+
28
+ def query(Statement):
29
+ response = requests.post(API_URL, headers=headers, json=Statement)
30
+
31
+ print(response.json())
32
+ response_json = response.json()[0]
33
+ positive_score = 0
34
+ neutral_score = 0
35
+ negative_score = 0
36
+
37
+ for entry in response_json:
38
+ if entry['label'] == 'positive':
39
+ positive_score = round(entry['score']*100,2)
40
+ elif entry['label'] == 'neutral':
41
+ neutral_score = round(entry['score']*100,2)
42
+ elif entry['label'] == 'negative':
43
+ negative_score = round(entry['score']*100,2)
44
+
45
+
46
+ labels = ['Negative', 'Neutral', 'Positive']
47
+ values = [negative_score, neutral_score, positive_score ]
48
+
49
+ max_score_dict = max(response_json, key=lambda x: x['score'])
50
+
51
+ max_label = max_score_dict['label'].capitalize()
52
+
53
+ positive_plot = get_chart(positive_score, '#32CD32')
54
+ negative_plot = get_chart(negative_score, '#CE2029')
55
+ neutral_plot = get_chart(neutral_score, '#ADD8E6')
56
+ return f"Overall sentiment is {max_label}", positive_plot, neutral_plot, negative_plot
57
+
58
+ with gr.Blocks() as financial_sentiment_interface:
59
+ gr.Markdown("# Financial Sentiment Analysis")
60
+ with gr.Row():
61
+ with gr.Column():
62
+ financial_content = gr.Textbox(lines=2, placeholder="Your Financial Content Here...", label="Financial News")
63
+ submit_btn = gr.Button(value="Submit")
64
+ sentiment = gr.Textbox(label="Sentiment")
65
+ with gr.Row():
66
+ positive_plot = gr.Plot(label="Positive Sentiment")
67
+ neutral_plot = gr.Plot(label="Neutral Sentiment")
68
+ negative_plot = gr.Plot(label="Negative Sentiment")
69
+
70
+ submit_btn.click(query, inputs=financial_content, outputs=[sentiment,positive_plot,neutral_plot,negative_plot], api_name="sentiment-analysis")
71
+
72
+ financial_sentiment_interface.launch()