Spaces:
Runtime error
Runtime error
# PANNs: Large-Scale Pretrained Audio Neural Networks for Audio Pattern Recognition | |
# Reference from https://github.com/qiuqiangkong/audioset_tagging_cnn | |
# Some layers are re-designed for CLAP | |
import os | |
os.environ["NUMBA_CACHE_DIR"] = "/tmp/" | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from torchlibrosa.stft import Spectrogram, LogmelFilterBank | |
from torchlibrosa.augmentation import SpecAugmentation | |
from .utils import do_mixup, interpolate, pad_framewise_output | |
from .feature_fusion import iAFF, AFF, DAF | |
def init_layer(layer): | |
"""Initialize a Linear or Convolutional layer.""" | |
nn.init.xavier_uniform_(layer.weight) | |
if hasattr(layer, "bias"): | |
if layer.bias is not None: | |
layer.bias.data.fill_(0.0) | |
def init_bn(bn): | |
"""Initialize a Batchnorm layer.""" | |
bn.bias.data.fill_(0.0) | |
bn.weight.data.fill_(1.0) | |
class ConvBlock(nn.Module): | |
def __init__(self, in_channels, out_channels): | |
super(ConvBlock, self).__init__() | |
self.conv1 = nn.Conv2d( | |
in_channels=in_channels, | |
out_channels=out_channels, | |
kernel_size=(3, 3), | |
stride=(1, 1), | |
padding=(1, 1), | |
bias=False, | |
) | |
self.conv2 = nn.Conv2d( | |
in_channels=out_channels, | |
out_channels=out_channels, | |
kernel_size=(3, 3), | |
stride=(1, 1), | |
padding=(1, 1), | |
bias=False, | |
) | |
self.bn1 = nn.BatchNorm2d(out_channels) | |
self.bn2 = nn.BatchNorm2d(out_channels) | |
self.init_weight() | |
def init_weight(self): | |
init_layer(self.conv1) | |
init_layer(self.conv2) | |
init_bn(self.bn1) | |
init_bn(self.bn2) | |
def forward(self, input, pool_size=(2, 2), pool_type="avg"): | |
x = input | |
x = F.relu_(self.bn1(self.conv1(x))) | |
x = F.relu_(self.bn2(self.conv2(x))) | |
if pool_type == "max": | |
x = F.max_pool2d(x, kernel_size=pool_size) | |
elif pool_type == "avg": | |
x = F.avg_pool2d(x, kernel_size=pool_size) | |
elif pool_type == "avg+max": | |
x1 = F.avg_pool2d(x, kernel_size=pool_size) | |
x2 = F.max_pool2d(x, kernel_size=pool_size) | |
x = x1 + x2 | |
else: | |
raise Exception("Incorrect argument!") | |
return x | |
class ConvBlock5x5(nn.Module): | |
def __init__(self, in_channels, out_channels): | |
super(ConvBlock5x5, self).__init__() | |
self.conv1 = nn.Conv2d( | |
in_channels=in_channels, | |
out_channels=out_channels, | |
kernel_size=(5, 5), | |
stride=(1, 1), | |
padding=(2, 2), | |
bias=False, | |
) | |
self.bn1 = nn.BatchNorm2d(out_channels) | |
self.init_weight() | |
def init_weight(self): | |
init_layer(self.conv1) | |
init_bn(self.bn1) | |
def forward(self, input, pool_size=(2, 2), pool_type="avg"): | |
x = input | |
x = F.relu_(self.bn1(self.conv1(x))) | |
if pool_type == "max": | |
x = F.max_pool2d(x, kernel_size=pool_size) | |
elif pool_type == "avg": | |
x = F.avg_pool2d(x, kernel_size=pool_size) | |
elif pool_type == "avg+max": | |
x1 = F.avg_pool2d(x, kernel_size=pool_size) | |
x2 = F.max_pool2d(x, kernel_size=pool_size) | |
x = x1 + x2 | |
else: | |
raise Exception("Incorrect argument!") | |
return x | |
class AttBlock(nn.Module): | |
def __init__(self, n_in, n_out, activation="linear", temperature=1.0): | |
super(AttBlock, self).__init__() | |
self.activation = activation | |
self.temperature = temperature | |
self.att = nn.Conv1d( | |
in_channels=n_in, | |
out_channels=n_out, | |
kernel_size=1, | |
stride=1, | |
padding=0, | |
bias=True, | |
) | |
self.cla = nn.Conv1d( | |
in_channels=n_in, | |
out_channels=n_out, | |
kernel_size=1, | |
stride=1, | |
padding=0, | |
bias=True, | |
) | |
self.bn_att = nn.BatchNorm1d(n_out) | |
self.init_weights() | |
def init_weights(self): | |
init_layer(self.att) | |
init_layer(self.cla) | |
init_bn(self.bn_att) | |
def forward(self, x): | |
# x: (n_samples, n_in, n_time) | |
norm_att = torch.softmax(torch.clamp(self.att(x), -10, 10), dim=-1) | |
cla = self.nonlinear_transform(self.cla(x)) | |
x = torch.sum(norm_att * cla, dim=2) | |
return x, norm_att, cla | |
def nonlinear_transform(self, x): | |
if self.activation == "linear": | |
return x | |
elif self.activation == "sigmoid": | |
return torch.sigmoid(x) | |
class Cnn14(nn.Module): | |
def __init__( | |
self, | |
sample_rate, | |
window_size, | |
hop_size, | |
mel_bins, | |
fmin, | |
fmax, | |
classes_num, | |
enable_fusion=False, | |
fusion_type="None", | |
): | |
super(Cnn14, self).__init__() | |
window = "hann" | |
center = True | |
pad_mode = "reflect" | |
ref = 1.0 | |
amin = 1e-10 | |
top_db = None | |
self.enable_fusion = enable_fusion | |
self.fusion_type = fusion_type | |
# Spectrogram extractor | |
self.spectrogram_extractor = Spectrogram( | |
n_fft=window_size, | |
hop_length=hop_size, | |
win_length=window_size, | |
window=window, | |
center=center, | |
pad_mode=pad_mode, | |
freeze_parameters=True, | |
) | |
# Logmel feature extractor | |
self.logmel_extractor = LogmelFilterBank( | |
sr=sample_rate, | |
n_fft=window_size, | |
n_mels=mel_bins, | |
fmin=fmin, | |
fmax=fmax, | |
ref=ref, | |
amin=amin, | |
top_db=top_db, | |
freeze_parameters=True, | |
) | |
# Spec augmenter | |
self.spec_augmenter = SpecAugmentation( | |
time_drop_width=64, | |
time_stripes_num=2, | |
freq_drop_width=8, | |
freq_stripes_num=2, | |
) | |
self.bn0 = nn.BatchNorm2d(64) | |
if (self.enable_fusion) and (self.fusion_type == "channel_map"): | |
self.conv_block1 = ConvBlock(in_channels=4, out_channels=64) | |
else: | |
self.conv_block1 = ConvBlock(in_channels=1, out_channels=64) | |
self.conv_block2 = ConvBlock(in_channels=64, out_channels=128) | |
self.conv_block3 = ConvBlock(in_channels=128, out_channels=256) | |
self.conv_block4 = ConvBlock(in_channels=256, out_channels=512) | |
self.conv_block5 = ConvBlock(in_channels=512, out_channels=1024) | |
self.conv_block6 = ConvBlock(in_channels=1024, out_channels=2048) | |
self.fc1 = nn.Linear(2048, 2048, bias=True) | |
self.fc_audioset = nn.Linear(2048, classes_num, bias=True) | |
if (self.enable_fusion) and ( | |
self.fusion_type in ["daf_1d", "aff_1d", "iaff_1d"] | |
): | |
self.mel_conv1d = nn.Sequential( | |
nn.Conv1d(64, 64, kernel_size=5, stride=3, padding=2), | |
nn.BatchNorm1d(64), # No Relu | |
) | |
if self.fusion_type == "daf_1d": | |
self.fusion_model = DAF() | |
elif self.fusion_type == "aff_1d": | |
self.fusion_model = AFF(channels=64, type="1D") | |
elif self.fusion_type == "iaff_1d": | |
self.fusion_model = iAFF(channels=64, type="1D") | |
if (self.enable_fusion) and ( | |
self.fusion_type in ["daf_2d", "aff_2d", "iaff_2d"] | |
): | |
self.mel_conv2d = nn.Sequential( | |
nn.Conv2d(1, 64, kernel_size=(5, 5), stride=(6, 2), padding=(2, 2)), | |
nn.BatchNorm2d(64), | |
nn.ReLU(inplace=True), | |
) | |
if self.fusion_type == "daf_2d": | |
self.fusion_model = DAF() | |
elif self.fusion_type == "aff_2d": | |
self.fusion_model = AFF(channels=64, type="2D") | |
elif self.fusion_type == "iaff_2d": | |
self.fusion_model = iAFF(channels=64, type="2D") | |
self.init_weight() | |
def init_weight(self): | |
init_bn(self.bn0) | |
init_layer(self.fc1) | |
init_layer(self.fc_audioset) | |
def forward(self, input, mixup_lambda=None, device=None): | |
""" | |
Input: (batch_size, data_length)""" | |
if self.enable_fusion and input["longer"].sum() == 0: | |
# if no audio is longer than 10s, then randomly select one audio to be longer | |
input["longer"][torch.randint(0, input["longer"].shape[0], (1,))] = True | |
if not self.enable_fusion: | |
x = self.spectrogram_extractor( | |
input["waveform"].to(device=device, non_blocking=True) | |
) # (batch_size, 1, time_steps, freq_bins) | |
x = self.logmel_extractor(x) # (batch_size, 1, time_steps, mel_bins) | |
x = x.transpose(1, 3) | |
x = self.bn0(x) | |
x = x.transpose(1, 3) | |
else: | |
longer_list = input["longer"].to(device=device, non_blocking=True) | |
x = input["mel_fusion"].to(device=device, non_blocking=True) | |
longer_list_idx = torch.where(longer_list)[0] | |
x = x.transpose(1, 3) | |
x = self.bn0(x) | |
x = x.transpose(1, 3) | |
if self.fusion_type in ["daf_1d", "aff_1d", "iaff_1d"]: | |
new_x = x[:, 0:1, :, :].clone().contiguous() | |
# local processing | |
if len(longer_list_idx) > 0: | |
fusion_x_local = x[longer_list_idx, 1:, :, :].clone().contiguous() | |
FB, FC, FT, FF = fusion_x_local.size() | |
fusion_x_local = fusion_x_local.view(FB * FC, FT, FF) | |
fusion_x_local = torch.permute( | |
fusion_x_local, (0, 2, 1) | |
).contiguous() | |
fusion_x_local = self.mel_conv1d(fusion_x_local) | |
fusion_x_local = fusion_x_local.view( | |
FB, FC, FF, fusion_x_local.size(-1) | |
) | |
fusion_x_local = ( | |
torch.permute(fusion_x_local, (0, 2, 1, 3)) | |
.contiguous() | |
.flatten(2) | |
) | |
if fusion_x_local.size(-1) < FT: | |
fusion_x_local = torch.cat( | |
[ | |
fusion_x_local, | |
torch.zeros( | |
(FB, FF, FT - fusion_x_local.size(-1)), | |
device=device, | |
), | |
], | |
dim=-1, | |
) | |
else: | |
fusion_x_local = fusion_x_local[:, :, :FT] | |
# 1D fusion | |
new_x = new_x.squeeze(1).permute((0, 2, 1)).contiguous() | |
new_x[longer_list_idx] = self.fusion_model( | |
new_x[longer_list_idx], fusion_x_local | |
) | |
x = new_x.permute((0, 2, 1)).contiguous()[:, None, :, :] | |
else: | |
x = new_x | |
elif self.fusion_type in ["daf_2d", "aff_2d", "iaff_2d", "channel_map"]: | |
x = x # no change | |
if self.training: | |
x = self.spec_augmenter(x) | |
# Mixup on spectrogram | |
if self.training and mixup_lambda is not None: | |
x = do_mixup(x, mixup_lambda) | |
if (self.enable_fusion) and ( | |
self.fusion_type in ["daf_2d", "aff_2d", "iaff_2d"] | |
): | |
global_x = x[:, 0:1, :, :] | |
# global processing | |
B, C, H, W = global_x.shape | |
global_x = self.conv_block1(global_x, pool_size=(2, 2), pool_type="avg") | |
if len(longer_list_idx) > 0: | |
local_x = x[longer_list_idx, 1:, :, :].contiguous() | |
TH = global_x.size(-2) | |
# local processing | |
B, C, H, W = local_x.shape | |
local_x = local_x.view(B * C, 1, H, W) | |
local_x = self.mel_conv2d(local_x) | |
local_x = local_x.view( | |
B, C, local_x.size(1), local_x.size(2), local_x.size(3) | |
) | |
local_x = local_x.permute((0, 2, 1, 3, 4)).contiguous().flatten(2, 3) | |
TB, TC, _, TW = local_x.size() | |
if local_x.size(-2) < TH: | |
local_x = torch.cat( | |
[ | |
local_x, | |
torch.zeros( | |
(TB, TC, TH - local_x.size(-2), TW), | |
device=global_x.device, | |
), | |
], | |
dim=-2, | |
) | |
else: | |
local_x = local_x[:, :, :TH, :] | |
global_x[longer_list_idx] = self.fusion_model( | |
global_x[longer_list_idx], local_x | |
) | |
x = global_x | |
else: | |
x = self.conv_block1(x, pool_size=(2, 2), pool_type="avg") | |
x = F.dropout(x, p=0.2, training=self.training) | |
x = self.conv_block2(x, pool_size=(2, 2), pool_type="avg") | |
x = F.dropout(x, p=0.2, training=self.training) | |
x = self.conv_block3(x, pool_size=(2, 2), pool_type="avg") | |
x = F.dropout(x, p=0.2, training=self.training) | |
x = self.conv_block4(x, pool_size=(2, 2), pool_type="avg") | |
x = F.dropout(x, p=0.2, training=self.training) | |
x = self.conv_block5(x, pool_size=(2, 2), pool_type="avg") | |
x = F.dropout(x, p=0.2, training=self.training) | |
x = self.conv_block6(x, pool_size=(1, 1), pool_type="avg") | |
x = F.dropout(x, p=0.2, training=self.training) | |
x = torch.mean(x, dim=3) | |
latent_x1 = F.max_pool1d(x, kernel_size=3, stride=1, padding=1) | |
latent_x2 = F.avg_pool1d(x, kernel_size=3, stride=1, padding=1) | |
latent_x = latent_x1 + latent_x2 | |
latent_x = latent_x.transpose(1, 2) | |
latent_x = F.relu_(self.fc1(latent_x)) | |
latent_output = interpolate(latent_x, 32) | |
(x1, _) = torch.max(x, dim=2) | |
x2 = torch.mean(x, dim=2) | |
x = x1 + x2 | |
x = F.dropout(x, p=0.5, training=self.training) | |
x = F.relu_(self.fc1(x)) | |
embedding = F.dropout(x, p=0.5, training=self.training) | |
clipwise_output = torch.sigmoid(self.fc_audioset(x)) | |
output_dict = { | |
"clipwise_output": clipwise_output, | |
"embedding": embedding, | |
"fine_grained_embedding": latent_output, | |
} | |
return output_dict | |
class Cnn6(nn.Module): | |
def __init__( | |
self, | |
sample_rate, | |
window_size, | |
hop_size, | |
mel_bins, | |
fmin, | |
fmax, | |
classes_num, | |
enable_fusion=False, | |
fusion_type="None", | |
): | |
super(Cnn6, self).__init__() | |
window = "hann" | |
center = True | |
pad_mode = "reflect" | |
ref = 1.0 | |
amin = 1e-10 | |
top_db = None | |
self.enable_fusion = enable_fusion | |
self.fusion_type = fusion_type | |
# Spectrogram extractor | |
self.spectrogram_extractor = Spectrogram( | |
n_fft=window_size, | |
hop_length=hop_size, | |
win_length=window_size, | |
window=window, | |
center=center, | |
pad_mode=pad_mode, | |
freeze_parameters=True, | |
) | |
# Logmel feature extractor | |
self.logmel_extractor = LogmelFilterBank( | |
sr=sample_rate, | |
n_fft=window_size, | |
n_mels=mel_bins, | |
fmin=fmin, | |
fmax=fmax, | |
ref=ref, | |
amin=amin, | |
top_db=top_db, | |
freeze_parameters=True, | |
) | |
# Spec augmenter | |
self.spec_augmenter = SpecAugmentation( | |
time_drop_width=64, | |
time_stripes_num=2, | |
freq_drop_width=8, | |
freq_stripes_num=2, | |
) | |
self.bn0 = nn.BatchNorm2d(64) | |
self.conv_block1 = ConvBlock5x5(in_channels=1, out_channels=64) | |
self.conv_block2 = ConvBlock5x5(in_channels=64, out_channels=128) | |
self.conv_block3 = ConvBlock5x5(in_channels=128, out_channels=256) | |
self.conv_block4 = ConvBlock5x5(in_channels=256, out_channels=512) | |
self.fc1 = nn.Linear(512, 512, bias=True) | |
self.fc_audioset = nn.Linear(512, classes_num, bias=True) | |
self.init_weight() | |
def init_weight(self): | |
init_bn(self.bn0) | |
init_layer(self.fc1) | |
init_layer(self.fc_audioset) | |
def forward(self, input, mixup_lambda=None, device=None): | |
""" | |
Input: (batch_size, data_length)""" | |
x = self.spectrogram_extractor(input) # (batch_size, 1, time_steps, freq_bins) | |
x = self.logmel_extractor(x) # (batch_size, 1, time_steps, mel_bins) | |
x = x.transpose(1, 3) | |
x = self.bn0(x) | |
x = x.transpose(1, 3) | |
if self.training: | |
x = self.spec_augmenter(x) | |
# Mixup on spectrogram | |
if self.training and mixup_lambda is not None: | |
x = do_mixup(x, mixup_lambda) | |
x = self.conv_block1(x, pool_size=(2, 2), pool_type="avg") | |
x = F.dropout(x, p=0.2, training=self.training) | |
x = self.conv_block2(x, pool_size=(2, 2), pool_type="avg") | |
x = F.dropout(x, p=0.2, training=self.training) | |
x = self.conv_block3(x, pool_size=(2, 2), pool_type="avg") | |
x = F.dropout(x, p=0.2, training=self.training) | |
x = self.conv_block4(x, pool_size=(2, 2), pool_type="avg") | |
x = F.dropout(x, p=0.2, training=self.training) | |
x = torch.mean(x, dim=3) | |
latent_x1 = F.max_pool1d(x, kernel_size=3, stride=1, padding=1) | |
latent_x2 = F.avg_pool1d(x, kernel_size=3, stride=1, padding=1) | |
latent_x = latent_x1 + latent_x2 | |
latent_x = latent_x.transpose(1, 2) | |
latent_x = F.relu_(self.fc1(latent_x)) | |
latent_output = interpolate(latent_x, 16) | |
(x1, _) = torch.max(x, dim=2) | |
x2 = torch.mean(x, dim=2) | |
x = x1 + x2 | |
x = F.dropout(x, p=0.5, training=self.training) | |
x = F.relu_(self.fc1(x)) | |
embedding = F.dropout(x, p=0.5, training=self.training) | |
clipwise_output = torch.sigmoid(self.fc_audioset(x)) | |
output_dict = { | |
"clipwise_output": clipwise_output, | |
"embedding": embedding, | |
"fine_grained_embedding": latent_output, | |
} | |
return output_dict | |
class Cnn10(nn.Module): | |
def __init__( | |
self, | |
sample_rate, | |
window_size, | |
hop_size, | |
mel_bins, | |
fmin, | |
fmax, | |
classes_num, | |
enable_fusion=False, | |
fusion_type="None", | |
): | |
super(Cnn10, self).__init__() | |
window = "hann" | |
center = True | |
pad_mode = "reflect" | |
ref = 1.0 | |
amin = 1e-10 | |
top_db = None | |
self.enable_fusion = enable_fusion | |
self.fusion_type = fusion_type | |
# Spectrogram extractor | |
self.spectrogram_extractor = Spectrogram( | |
n_fft=window_size, | |
hop_length=hop_size, | |
win_length=window_size, | |
window=window, | |
center=center, | |
pad_mode=pad_mode, | |
freeze_parameters=True, | |
) | |
# Logmel feature extractor | |
self.logmel_extractor = LogmelFilterBank( | |
sr=sample_rate, | |
n_fft=window_size, | |
n_mels=mel_bins, | |
fmin=fmin, | |
fmax=fmax, | |
ref=ref, | |
amin=amin, | |
top_db=top_db, | |
freeze_parameters=True, | |
) | |
# Spec augmenter | |
self.spec_augmenter = SpecAugmentation( | |
time_drop_width=64, | |
time_stripes_num=2, | |
freq_drop_width=8, | |
freq_stripes_num=2, | |
) | |
self.bn0 = nn.BatchNorm2d(64) | |
self.conv_block1 = ConvBlock(in_channels=1, out_channels=64) | |
self.conv_block2 = ConvBlock(in_channels=64, out_channels=128) | |
self.conv_block3 = ConvBlock(in_channels=128, out_channels=256) | |
self.conv_block4 = ConvBlock(in_channels=256, out_channels=512) | |
self.conv_block5 = ConvBlock(in_channels=512, out_channels=1024) | |
self.fc1 = nn.Linear(1024, 1024, bias=True) | |
self.fc_audioset = nn.Linear(1024, classes_num, bias=True) | |
self.init_weight() | |
def init_weight(self): | |
init_bn(self.bn0) | |
init_layer(self.fc1) | |
init_layer(self.fc_audioset) | |
def forward(self, input, mixup_lambda=None, device=None): | |
""" | |
Input: (batch_size, data_length)""" | |
x = self.spectrogram_extractor(input) # (batch_size, 1, time_steps, freq_bins) | |
x = self.logmel_extractor(x) # (batch_size, 1, time_steps, mel_bins) | |
x = x.transpose(1, 3) | |
x = self.bn0(x) | |
x = x.transpose(1, 3) | |
if self.training: | |
x = self.spec_augmenter(x) | |
# Mixup on spectrogram | |
if self.training and mixup_lambda is not None: | |
x = do_mixup(x, mixup_lambda) | |
x = self.conv_block1(x, pool_size=(2, 2), pool_type="avg") | |
x = F.dropout(x, p=0.2, training=self.training) | |
x = self.conv_block2(x, pool_size=(2, 2), pool_type="avg") | |
x = F.dropout(x, p=0.2, training=self.training) | |
x = self.conv_block3(x, pool_size=(2, 2), pool_type="avg") | |
x = F.dropout(x, p=0.2, training=self.training) | |
x = self.conv_block4(x, pool_size=(2, 2), pool_type="avg") | |
x = F.dropout(x, p=0.2, training=self.training) | |
x = self.conv_block5(x, pool_size=(2, 2), pool_type="avg") | |
x = F.dropout(x, p=0.2, training=self.training) | |
x = torch.mean(x, dim=3) | |
latent_x1 = F.max_pool1d(x, kernel_size=3, stride=1, padding=1) | |
latent_x2 = F.avg_pool1d(x, kernel_size=3, stride=1, padding=1) | |
latent_x = latent_x1 + latent_x2 | |
latent_x = latent_x.transpose(1, 2) | |
latent_x = F.relu_(self.fc1(latent_x)) | |
latent_output = interpolate(latent_x, 32) | |
(x1, _) = torch.max(x, dim=2) | |
x2 = torch.mean(x, dim=2) | |
x = x1 + x2 | |
x = F.dropout(x, p=0.5, training=self.training) | |
x = F.relu_(self.fc1(x)) | |
embedding = F.dropout(x, p=0.5, training=self.training) | |
clipwise_output = torch.sigmoid(self.fc_audioset(x)) | |
output_dict = { | |
"clipwise_output": clipwise_output, | |
"embedding": embedding, | |
"fine_grained_embedding": latent_output, | |
} | |
return output_dict | |
def create_pann_model(audio_cfg, enable_fusion=False, fusion_type="None"): | |
try: | |
ModelProto = eval(audio_cfg.model_name) | |
model = ModelProto( | |
sample_rate=audio_cfg.sample_rate, | |
window_size=audio_cfg.window_size, | |
hop_size=audio_cfg.hop_size, | |
mel_bins=audio_cfg.mel_bins, | |
fmin=audio_cfg.fmin, | |
fmax=audio_cfg.fmax, | |
classes_num=audio_cfg.class_num, | |
enable_fusion=enable_fusion, | |
fusion_type=fusion_type, | |
) | |
return model | |
except: | |
raise RuntimeError( | |
f"Import Model for {audio_cfg.model_name} not found, or the audio cfg parameters are not enough." | |
) | |