File size: 25,002 Bytes
2f85de4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 |
# python3.7
"""Utility functions for visualizing results."""
import base64
import os.path
import cv2
import numpy as np
from bs4 import BeautifulSoup
__all__ = [
'get_grid_shape', 'get_blank_image', 'load_image', 'save_image',
'resize_image', 'postprocess_image', 'add_text_to_image',
'parse_image_size', 'fuse_images', 'HtmlPageVisualizer', 'HtmlPageReader',
'VideoReader', 'VideoWriter'
]
def get_grid_shape(size, row=0, col=0, is_portrait=False):
"""Gets the shape of a grid based on the size.
This function makes greatest effort on making the output grid square if
neither `row` nor `col` is set. If `is_portrait` is set as `False`, the
height will always be equal to or smaller than the width. For example, if
input `size = 16`, output shape will be `(4, 4)`; if input `size = 15`,
output shape will be (3, 5). Otherwise, the height will always be equal to
or larger than the width.
Args:
size: Size (height * width) of the target grid.
is_portrait: Whether to return a portrait size of a landscape size.
(default: False)
Returns:
A two-element tuple, representing height and width respectively.
"""
assert isinstance(size, int)
assert isinstance(row, int)
assert isinstance(col, int)
if size == 0:
return (0, 0)
if row > 0 and col > 0 and row * col != size:
row = 0
col = 0
if row > 0 and size % row == 0:
return (row, size // row)
if col > 0 and size % col == 0:
return (size // col, col)
row = int(np.sqrt(size))
while row > 0:
if size % row == 0:
col = size // row
break
row = row - 1
return (col, row) if is_portrait else (row, col)
def get_blank_image(height, width, channels=3, is_black=True):
"""Gets a blank image, either white of black.
NOTE: This function will always return an image with `RGB` channel order for
color image and pixel range [0, 255].
Args:
height: Height of the returned image.
width: Width of the returned image.
channels: Number of channels. (default: 3)
is_black: Whether to return a black image. (default: True)
"""
shape = (height, width, channels)
if is_black:
return np.zeros(shape, dtype=np.uint8)
return np.ones(shape, dtype=np.uint8) * 255
def load_image(path, image_channels=3):
"""Loads an image from disk.
NOTE: This function will always return an image with `RGB` channel order for
color image and pixel range [0, 255].
Args:
path: Path to load the image from.
image_channels: Number of image channels of returned image. This field
is employed since `cv2.imread()` will always return a 3-channel
image, even for grayscale image.
Returns:
An image with dtype `np.ndarray`, or `None` if `path` does not exist.
"""
if not os.path.isfile(path):
return None
assert image_channels in [1, 3]
image = cv2.imread(path)
assert image.ndim == 3 and image.shape[2] == 3
if image_channels == 1:
return image[:, :, 0:1]
return image[:, :, ::-1]
def save_image(path, image):
"""Saves an image to disk.
NOTE: The input image (if colorful) is assumed to be with `RGB` channel
order and pixel range [0, 255].
Args:
path: Path to save the image to.
image: Image to save.
"""
if image is None:
return
assert image.ndim == 3 and image.shape[2] in [1, 3]
cv2.imwrite(path, image[:, :, ::-1])
def resize_image(image, *args, **kwargs):
"""Resizes image.
This is a wrap of `cv2.resize()`.
NOTE: THe channel order of the input image will not be changed.
Args:
image: Image to resize.
"""
if image is None:
return None
assert image.ndim == 3 and image.shape[2] in [1, 3]
image = cv2.resize(image, *args, **kwargs)
if image.ndim == 2:
return image[:, :, np.newaxis]
return image
def postprocess_image(image, min_val=-1.0, max_val=1.0, data_format='NCHW'):
"""Post-processes image to pixel range [0, 255] with dtype `uint8`.
NOTE: The returned image will always be with `HWC` format.
Args:
min_val: Minimum value of the input image.
max_val: Maximum value of the input image.
data_format: Data format of the input image. Supporting `NCHW`, `NHWC`,
`CHW`, `HWC`.
Returns:
The post-processed image.
Raises:
NotImplementedError: If the input `data_format` is not support.
"""
assert isinstance(image, np.ndarray)
image = image.astype(np.float64)
image = (image - min_val) * 255 / (max_val - min_val)
image = np.clip(image + 0.5, 0, 255).astype(np.uint8)
data_format = data_format.upper()
if data_format == 'NCHW':
assert image.ndim == 4 and image.shape[1] in [1, 3]
return image.transpose(0, 2, 3, 1)
if data_format == 'NHWC':
assert image.ndim == 4 and image.shape[3] in [1, 3]
return image
if data_format == 'CHW':
assert image.ndim == 3 and image.shape[0] in [1, 3]
return image.transpose(1, 2, 0)
if data_format == 'HWC':
assert image.ndim == 3 and image.shape[2] in [1, 3]
return image
raise NotImplementedError(f'Data format `{data_format}` is not supported!')
def add_text_to_image(image,
text='',
position=None,
font=cv2.FONT_HERSHEY_TRIPLEX,
font_size=1.0,
line_type=cv2.LINE_8,
line_width=1,
color=(255, 255, 255)):
"""Overlays text on given image.
NOTE: The input image is assumed to be with `RGB` channel order.
Args:
image: The image to overlay text on.
text: Text content to overlay on the image. (default: '')
position: Target position (bottom-left corner) to add text. If not set,
center of the image will be used by default. (default: None)
font: Font of the text added. (default: cv2.FONT_HERSHEY_TRIPLEX)
font_size: Font size of the text added. (default: 1.0)
line_type: Line type used to depict the text. (default: cv2.LINE_8)
line_width: Line width used to depict the text. (default: 1)
color: Color of the text added in `RGB` channel order. (default:
(255, 255, 255))
Returns:
An image with target text overlayed on.
"""
if image is None or not text:
return image
cv2.putText(img=image,
text=text,
org=position,
fontFace=font,
fontScale=font_size,
color=color,
thickness=line_width,
lineType=line_type,
bottomLeftOrigin=False)
return image
def parse_image_size(obj):
"""Parses object to a pair of image size, i.e., (width, height).
Args:
obj: The input object to parse image size from.
Returns:
A two-element tuple, indicating image width and height respectively.
Raises:
If the input is invalid, i.e., neither a list or tuple, nor a string.
"""
if obj is None or obj == '':
width = height = 0
elif isinstance(obj, int):
width = height = obj
elif isinstance(obj, (list, tuple, np.ndarray)):
numbers = tuple(obj)
if len(numbers) == 0:
width = height = 0
elif len(numbers) == 1:
width = height = numbers[0]
elif len(numbers) == 2:
width = numbers[0]
height = numbers[1]
else:
raise ValueError(f'At most two elements for image size.')
elif isinstance(obj, str):
splits = obj.replace(' ', '').split(',')
numbers = tuple(map(int, splits))
if len(numbers) == 0:
width = height = 0
elif len(numbers) == 1:
width = height = numbers[0]
elif len(numbers) == 2:
width = numbers[0]
height = numbers[1]
else:
raise ValueError(f'At most two elements for image size.')
else:
raise ValueError(f'Invalid type of input: {type(obj)}!')
return (max(0, width), max(0, height))
def fuse_images(images,
image_size=None,
row=0,
col=0,
is_row_major=True,
is_portrait=False,
row_spacing=0,
col_spacing=0,
border_left=0,
border_right=0,
border_top=0,
border_bottom=0,
black_background=True):
"""Fuses a collection of images into an entire image.
Args:
images: A collection of images to fuse. Should be with shape [num,
height, width, channels].
image_size: This field is used to resize the image before fusion. `0`
disables resizing. (default: None)
row: Number of rows used for image fusion. If not set, this field will
be automatically assigned based on `col` and total number of images.
(default: None)
col: Number of columns used for image fusion. If not set, this field
will be automatically assigned based on `row` and total number of
images. (default: None)
is_row_major: Whether the input images should be arranged row-major or
column-major. (default: True)
is_portrait: Only active when both `row` and `col` should be assigned
automatically. (default: False)
row_spacing: Space between rows. (default: 0)
col_spacing: Space between columns. (default: 0)
border_left: Width of left border. (default: 0)
border_right: Width of right border. (default: 0)
border_top: Width of top border. (default: 0)
border_bottom: Width of bottom border. (default: 0)
Returns:
The fused image.
Raises:
ValueError: If the input `images` is not with shape [num, height, width,
width].
"""
if images is None:
return images
if images.ndim != 4:
raise ValueError(f'Input `images` should be with shape [num, height, '
f'width, channels], but {images.shape} is received!')
num, image_height, image_width, channels = images.shape
width, height = parse_image_size(image_size)
height = height or image_height
width = width or image_width
row, col = get_grid_shape(num, row=row, col=col, is_portrait=is_portrait)
fused_height = (
height * row + row_spacing * (row - 1) + border_top + border_bottom)
fused_width = (
width * col + col_spacing * (col - 1) + border_left + border_right)
fused_image = get_blank_image(
fused_height, fused_width, channels=channels, is_black=black_background)
images = images.reshape(row, col, image_height, image_width, channels)
if not is_row_major:
images = images.transpose(1, 0, 2, 3, 4)
for i in range(row):
y = border_top + i * (height + row_spacing)
for j in range(col):
x = border_left + j * (width + col_spacing)
if height != image_height or width != image_width:
image = cv2.resize(images[i, j], (width, height))
else:
image = images[i, j]
fused_image[y:y + height, x:x + width] = image
return fused_image
def get_sortable_html_header(column_name_list, sort_by_ascending=False):
"""Gets header for sortable html page.
Basically, the html page contains a sortable table, where user can sort the
rows by a particular column by clicking the column head.
Example:
column_name_list = [name_1, name_2, name_3]
header = get_sortable_html_header(column_name_list)
footer = get_sortable_html_footer()
sortable_table = ...
html_page = header + sortable_table + footer
Args:
column_name_list: List of column header names.
sort_by_ascending: Default sorting order. If set as `True`, the html
page will be sorted by ascending order when the header is clicked
for the first time.
Returns:
A string, which represents for the header for a sortable html page.
"""
header = '\n'.join([
'<script type="text/javascript">',
'var column_idx;',
'var sort_by_ascending = ' + str(sort_by_ascending).lower() + ';',
'',
'function sorting(tbody, column_idx){',
' this.column_idx = column_idx;',
' Array.from(tbody.rows)',
' .sort(compareCells)',
' .forEach(function(row) { tbody.appendChild(row); })',
' sort_by_ascending = !sort_by_ascending;',
'}',
'',
'function compareCells(row_a, row_b) {',
' var val_a = row_a.cells[column_idx].innerText;',
' var val_b = row_b.cells[column_idx].innerText;',
' var flag = sort_by_ascending ? 1 : -1;',
' return flag * (val_a > val_b ? 1 : -1);',
'}',
'</script>',
'',
'<html>',
'',
'<head>',
'<style>',
' table {',
' border-spacing: 0;',
' border: 1px solid black;',
' }',
' th {',
' cursor: pointer;',
' }',
' th, td {',
' text-align: left;',
' vertical-align: middle;',
' border-collapse: collapse;',
' border: 0.5px solid black;',
' padding: 8px;',
' }',
' tr:nth-child(even) {',
' background-color: #d2d2d2;',
' }',
'</style>',
'</head>',
'',
'<body>',
'',
'<table>',
'<thead>',
'<tr>',
''])
for idx, name in enumerate(column_name_list):
header += f' <th onclick="sorting(tbody, {idx})">{name}</th>\n'
header += '</tr>\n'
header += '</thead>\n'
header += '<tbody id="tbody">\n'
return header
def get_sortable_html_footer():
"""Gets footer for sortable html page.
Check function `get_sortable_html_header()` for more details.
"""
return '</tbody>\n</table>\n\n</body>\n</html>\n'
def encode_image_to_html_str(image, image_size=None):
"""Encodes an image to html language.
NOTE: Input image is always assumed to be with `RGB` channel order.
Args:
image: The input image to encode. Should be with `RGB` channel order.
image_size: This field is used to resize the image before encoding. `0`
disables resizing. (default: None)
Returns:
A string which represents the encoded image.
"""
if image is None:
return ''
assert image.ndim == 3 and image.shape[2] in [1, 3]
# Change channel order to `BGR`, which is opencv-friendly.
image = image[:, :, ::-1]
# Resize the image if needed.
width, height = parse_image_size(image_size)
if height or width:
height = height or image.shape[0]
width = width or image.shape[1]
image = cv2.resize(image, (width, height))
# Encode the image to html-format string.
encoded_image = cv2.imencode('.jpg', image)[1].tostring()
encoded_image_base64 = base64.b64encode(encoded_image).decode('utf-8')
html_str = f'<img src="data:image/jpeg;base64, {encoded_image_base64}"/>'
return html_str
def decode_html_str_to_image(html_str, image_size=None):
"""Decodes image from html.
Args:
html_str: Image string parsed from html.
image_size: This field is used to resize the image after decoding. `0`
disables resizing. (default: None)
Returns:
An image with `RGB` channel order.
"""
if not html_str:
return None
assert isinstance(html_str, str)
image_str = html_str.split(',')[-1]
encoded_image = base64.b64decode(image_str)
encoded_image_numpy = np.frombuffer(encoded_image, dtype=np.uint8)
image = cv2.imdecode(encoded_image_numpy, flags=cv2.IMREAD_COLOR)
# Resize the image if needed.
width, height = parse_image_size(image_size)
if height or width:
height = height or image.shape[0]
width = width or image.shape[1]
image = cv2.resize(image, (width, height))
return image[:, :, ::-1]
class HtmlPageVisualizer(object):
"""Defines the html page visualizer.
This class can be used to visualize image results as html page. Basically,
it is based on an html-format sorted table with helper functions
`get_sortable_html_header()`, `get_sortable_html_footer()`, and
`encode_image_to_html_str()`. To simplify the usage, specifying the
following fields are enough to create a visualization page:
(1) num_rows: Number of rows of the table (header-row exclusive).
(2) num_cols: Number of columns of the table.
(3) header contents (optional): Title of each column.
NOTE: `grid_size` can be used to assign `num_rows` and `num_cols`
automatically.
Example:
html = HtmlPageVisualizer(num_rows, num_cols)
html.set_headers([...])
for i in range(num_rows):
for j in range(num_cols):
html.set_cell(i, j, text=..., image=..., highlight=False)
html.save('visualize.html')
"""
def __init__(self,
num_rows=0,
num_cols=0,
grid_size=0,
is_portrait=True,
viz_size=None):
if grid_size > 0:
num_rows, num_cols = get_grid_shape(
grid_size, row=num_rows, col=num_cols, is_portrait=is_portrait)
assert num_rows > 0 and num_cols > 0
self.num_rows = num_rows
self.num_cols = num_cols
self.viz_size = parse_image_size(viz_size)
self.headers = ['' for _ in range(self.num_cols)]
self.cells = [[{
'text': '',
'image': '',
'highlight': False,
} for _ in range(self.num_cols)] for _ in range(self.num_rows)]
def set_header(self, col_idx, content):
"""Sets the content of a particular header by column index."""
self.headers[col_idx] = content
def set_headers(self, contents):
"""Sets the contents of all headers."""
if isinstance(contents, str):
contents = [contents]
assert isinstance(contents, (list, tuple))
assert len(contents) == self.num_cols
for col_idx, content in enumerate(contents):
self.set_header(col_idx, content)
def set_cell(self, row_idx, col_idx, text='', image=None, highlight=False):
"""Sets the content of a particular cell.
Basically, a cell contains some text as well as an image. Both text and
image can be empty.
Args:
row_idx: Row index of the cell to edit.
col_idx: Column index of the cell to edit.
text: Text to add into the target cell. (default: None)
image: Image to show in the target cell. Should be with `RGB`
channel order. (default: None)
highlight: Whether to highlight this cell. (default: False)
"""
self.cells[row_idx][col_idx]['text'] = text
self.cells[row_idx][col_idx]['image'] = encode_image_to_html_str(
image, self.viz_size)
self.cells[row_idx][col_idx]['highlight'] = bool(highlight)
def save(self, save_path):
"""Saves the html page."""
html = ''
for i in range(self.num_rows):
html += f'<tr>\n'
for j in range(self.num_cols):
text = self.cells[i][j]['text']
image = self.cells[i][j]['image']
if self.cells[i][j]['highlight']:
color = ' bgcolor="#FF8888"'
else:
color = ''
if text:
html += f' <td{color}>{text}<br><br>{image}</td>\n'
else:
html += f' <td{color}>{image}</td>\n'
html += f'</tr>\n'
header = get_sortable_html_header(self.headers)
footer = get_sortable_html_footer()
with open(save_path, 'w') as f:
f.write(header + html + footer)
class HtmlPageReader(object):
"""Defines the html page reader.
This class can be used to parse results from the visualization page
generated by `HtmlPageVisualizer`.
Example:
html = HtmlPageReader(html_path)
for j in range(html.num_cols):
header = html.get_header(j)
for i in range(html.num_rows):
for j in range(html.num_cols):
text = html.get_text(i, j)
image = html.get_image(i, j, image_size=None)
"""
def __init__(self, html_path):
"""Initializes by loading the content from file."""
self.html_path = html_path
if not os.path.isfile(html_path):
raise ValueError(f'File `{html_path}` does not exist!')
# Load content.
with open(html_path, 'r') as f:
self.html = BeautifulSoup(f, 'html.parser')
# Parse headers.
thead = self.html.find('thead')
headers = thead.findAll('th')
self.headers = []
for header in headers:
self.headers.append(header.text)
self.num_cols = len(self.headers)
# Parse cells.
tbody = self.html.find('tbody')
rows = tbody.findAll('tr')
self.cells = []
for row in rows:
cells = row.findAll('td')
self.cells.append([])
for cell in cells:
self.cells[-1].append({
'text': cell.text,
'image': cell.find('img')['src'],
})
assert len(self.cells[-1]) == self.num_cols
self.num_rows = len(self.cells)
def get_header(self, j):
"""Gets header for a particular column."""
return self.headers[j]
def get_text(self, i, j):
"""Gets text from a particular cell."""
return self.cells[i][j]['text']
def get_image(self, i, j, image_size=None):
"""Gets image from a particular cell."""
return decode_html_str_to_image(self.cells[i][j]['image'], image_size)
class VideoReader(object):
"""Defines the video reader.
This class can be used to read frames from a given video.
"""
def __init__(self, path):
"""Initializes the video reader by loading the video from disk."""
if not os.path.isfile(path):
raise ValueError(f'Video `{path}` does not exist!')
self.path = path
self.video = cv2.VideoCapture(path)
assert self.video.isOpened()
self.position = 0
self.length = int(self.video.get(cv2.CAP_PROP_FRAME_COUNT))
self.frame_height = int(self.video.get(cv2.CAP_PROP_FRAME_HEIGHT))
self.frame_width = int(self.video.get(cv2.CAP_PROP_FRAME_WIDTH))
self.fps = self.video.get(cv2.CAP_PROP_FPS)
def __del__(self):
"""Releases the opened video."""
self.video.release()
def read(self, position=None):
"""Reads a certain frame.
NOTE: The returned frame is assumed to be with `RGB` channel order.
Args:
position: Optional. If set, the reader will read frames from the
exact position. Otherwise, the reader will read next frames.
(default: None)
"""
if position is not None and position < self.length:
self.video.set(cv2.CAP_PROP_POS_FRAMES, position)
self.position = position
success, frame = self.video.read()
self.position = self.position + 1
return frame[:, :, ::-1] if success else None
class VideoWriter(object):
"""Defines the video writer.
This class can be used to create a video.
NOTE: `.avi` and `DIVX` is the most recommended codec format since it does
not rely on other dependencies.
"""
def __init__(self, path, frame_height, frame_width, fps=24, codec='DIVX'):
"""Creates the video writer."""
self.path = path
self.frame_height = frame_height
self.frame_width = frame_width
self.fps = fps
self.codec = codec
self.video = cv2.VideoWriter(filename=path,
fourcc=cv2.VideoWriter_fourcc(*codec),
fps=fps,
frameSize=(frame_width, frame_height))
def __del__(self):
"""Releases the opened video."""
self.video.release()
def write(self, frame):
"""Writes a target frame.
NOTE: The input frame is assumed to be with `RGB` channel order.
"""
self.video.write(frame[:, :, ::-1])
|