File size: 16,042 Bytes
2f85de4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
# python3.7
"""Contains the implementation of generator described in PGGAN.

Paper: https://arxiv.org/pdf/1710.10196.pdf

Official TensorFlow implementation:
https://github.com/tkarras/progressive_growing_of_gans
"""

import numpy as np

import torch
import torch.nn as nn
import torch.nn.functional as F

__all__ = ['PGGANGenerator']

# Resolutions allowed.
_RESOLUTIONS_ALLOWED = [8, 16, 32, 64, 128, 256, 512, 1024]

# pylint: disable=missing-function-docstring

class PGGANGenerator(nn.Module):
    """Defines the generator network in PGGAN.

    NOTE: The synthesized images are with `RGB` channel order and pixel range
    [-1, 1].

    Settings for the network:

    (1) resolution: The resolution of the output image.
    (2) init_res: The initial resolution to start with convolution. (default: 4)
    (3) z_dim: Dimension of the input latent space, Z. (default: 512)
    (4) image_channels: Number of channels of the output image. (default: 3)
    (5) final_tanh: Whether to use `tanh` to control the final pixel range.
        (default: False)
    (6) label_dim: Dimension of the additional label for conditional generation.
        In one-hot conditioning case, it is equal to the number of classes. If
        set to 0, conditioning training will be disabled. (default: 0)
    (7) fused_scale: Whether to fused `upsample` and `conv2d` together,
        resulting in `conv2d_transpose`. (default: False)
    (8) use_wscale: Whether to use weight scaling. (default: True)
    (9) wscale_gain: The factor to control weight scaling. (default: sqrt(2.0))
    (10) fmaps_base: Factor to control number of feature maps for each layer.
         (default: 16 << 10)
    (11) fmaps_max: Maximum number of feature maps in each layer. (default: 512)
    (12) eps: A small value to avoid divide overflow. (default: 1e-8)
    """

    def __init__(self,
                 resolution,
                 init_res=4,
                 z_dim=512,
                 image_channels=3,
                 final_tanh=False,
                 label_dim=0,
                 fused_scale=False,
                 use_wscale=True,
                 wscale_gain=np.sqrt(2.0),
                 fmaps_base=16 << 10,
                 fmaps_max=512,
                 eps=1e-8):
        """Initializes with basic settings.

        Raises:
            ValueError: If the `resolution` is not supported.
        """
        super().__init__()

        if resolution not in _RESOLUTIONS_ALLOWED:
            raise ValueError(f'Invalid resolution: `{resolution}`!\n'
                             f'Resolutions allowed: {_RESOLUTIONS_ALLOWED}.')

        self.init_res = init_res
        self.init_res_log2 = int(np.log2(self.init_res))
        self.resolution = resolution
        self.final_res_log2 = int(np.log2(self.resolution))
        self.z_dim = z_dim
        self.image_channels = image_channels
        self.final_tanh = final_tanh
        self.label_dim = label_dim
        self.fused_scale = fused_scale
        self.use_wscale = use_wscale
        self.wscale_gain = wscale_gain
        self.fmaps_base = fmaps_base
        self.fmaps_max = fmaps_max
        self.eps = eps

        # Dimension of latent space, which is convenient for sampling.
        self.latent_dim = (self.z_dim,)

        # Number of convolutional layers.
        self.num_layers = (self.final_res_log2 - self.init_res_log2 + 1) * 2

        # Level-of-details (used for progressive training).
        self.register_buffer('lod', torch.zeros(()))
        self.pth_to_tf_var_mapping = {'lod': 'lod'}

        for res_log2 in range(self.init_res_log2, self.final_res_log2 + 1):
            res = 2 ** res_log2
            in_channels = self.get_nf(res // 2)
            out_channels = self.get_nf(res)
            block_idx = res_log2 - self.init_res_log2

            # First convolution layer for each resolution.
            if res == self.init_res:
                self.add_module(
                    f'layer{2 * block_idx}',
                    ConvLayer(in_channels=z_dim + label_dim,
                              out_channels=out_channels,
                              kernel_size=init_res,
                              padding=init_res - 1,
                              add_bias=True,
                              upsample=False,
                              fused_scale=False,
                              use_wscale=use_wscale,
                              wscale_gain=wscale_gain,
                              activation_type='lrelu',
                              eps=eps))
                tf_layer_name = 'Dense'
            else:
                self.add_module(
                    f'layer{2 * block_idx}',
                    ConvLayer(in_channels=in_channels,
                              out_channels=out_channels,
                              kernel_size=3,
                              padding=1,
                              add_bias=True,
                              upsample=True,
                              fused_scale=fused_scale,
                              use_wscale=use_wscale,
                              wscale_gain=wscale_gain,
                              activation_type='lrelu',
                              eps=eps))
                tf_layer_name = 'Conv0_up' if fused_scale else 'Conv0'
            self.pth_to_tf_var_mapping[f'layer{2 * block_idx}.weight'] = (
                f'{res}x{res}/{tf_layer_name}/weight')
            self.pth_to_tf_var_mapping[f'layer{2 * block_idx}.bias'] = (
                f'{res}x{res}/{tf_layer_name}/bias')

            # Second convolution layer for each resolution.
            self.add_module(
                f'layer{2 * block_idx + 1}',
                ConvLayer(in_channels=out_channels,
                          out_channels=out_channels,
                          kernel_size=3,
                          padding=1,
                          add_bias=True,
                          upsample=False,
                          fused_scale=False,
                          use_wscale=use_wscale,
                          wscale_gain=wscale_gain,
                          activation_type='lrelu',
                          eps=eps))
            tf_layer_name = 'Conv' if res == self.init_res else 'Conv1'
            self.pth_to_tf_var_mapping[f'layer{2 * block_idx + 1}.weight'] = (
                f'{res}x{res}/{tf_layer_name}/weight')
            self.pth_to_tf_var_mapping[f'layer{2 * block_idx + 1}.bias'] = (
                f'{res}x{res}/{tf_layer_name}/bias')

            # Output convolution layer for each resolution.
            self.add_module(
                f'output{block_idx}',
                ConvLayer(in_channels=out_channels,
                          out_channels=image_channels,
                          kernel_size=1,
                          padding=0,
                          add_bias=True,
                          upsample=False,
                          fused_scale=False,
                          use_wscale=use_wscale,
                          wscale_gain=1.0,
                          activation_type='linear',
                          eps=eps))
            self.pth_to_tf_var_mapping[f'output{block_idx}.weight'] = (
                f'ToRGB_lod{self.final_res_log2 - res_log2}/weight')
            self.pth_to_tf_var_mapping[f'output{block_idx}.bias'] = (
                f'ToRGB_lod{self.final_res_log2 - res_log2}/bias')

    def get_nf(self, res):
        """Gets number of feature maps according to the given resolution."""
        return min(self.fmaps_base // res, self.fmaps_max)

    def forward(self, z, label=None, lod=None):
        if z.ndim != 2 or z.shape[1] != self.z_dim:
            raise ValueError(f'Input latent code should be with shape '
                             f'[batch_size, latent_dim], where '
                             f'`latent_dim` equals to {self.z_dim}!\n'
                             f'But `{z.shape}` is received!')
        z = self.layer0.pixel_norm(z)
        if self.label_dim:
            if label is None:
                raise ValueError(f'Model requires an additional label '
                                 f'(with size {self.label_dim}) as input, '
                                 f'but no label is received!')
            if label.ndim != 2 or label.shape != (z.shape[0], self.label_dim):
                raise ValueError(f'Input label should be with shape '
                                 f'[batch_size, label_dim], where '
                                 f'`batch_size` equals to that of '
                                 f'latent codes ({z.shape[0]}) and '
                                 f'`label_dim` equals to {self.label_dim}!\n'
                                 f'But `{label.shape}` is received!')
            label = label.to(dtype=torch.float32)
            z = torch.cat((z, label), dim=1)

        lod = self.lod.item() if lod is None else lod
        if lod + self.init_res_log2 > self.final_res_log2:
            raise ValueError(f'Maximum level-of-details (lod) is '
                             f'{self.final_res_log2 - self.init_res_log2}, '
                             f'but `{lod}` is received!')

        x = z.view(z.shape[0], self.z_dim + self.label_dim, 1, 1)
        for res_log2 in range(self.init_res_log2, self.final_res_log2 + 1):
            current_lod = self.final_res_log2 - res_log2
            block_idx = res_log2 - self.init_res_log2
            if lod < current_lod + 1:
                x = getattr(self, f'layer{2 * block_idx}')(x)
                x = getattr(self, f'layer{2 * block_idx + 1}')(x)
            if current_lod - 1 < lod <= current_lod:
                image = getattr(self, f'output{block_idx}')(x)
            elif current_lod < lod < current_lod + 1:
                alpha = np.ceil(lod) - lod
                temp = getattr(self, f'output{block_idx}')(x)
                image = F.interpolate(image, scale_factor=2, mode='nearest')
                image = temp * alpha + image * (1 - alpha)
            elif lod >= current_lod + 1:
                image = F.interpolate(image, scale_factor=2, mode='nearest')
        if self.final_tanh:
            image = torch.tanh(image)

        results = {
            'z': z,
            'label': label,
            'image': image,
        }
        return results


class PixelNormLayer(nn.Module):
    """Implements pixel-wise feature vector normalization layer."""

    def __init__(self, dim, eps):
        super().__init__()
        self.dim = dim
        self.eps = eps

    def extra_repr(self):
        return f'dim={self.dim}, epsilon={self.eps}'

    def forward(self, x):
        scale = (x.square().mean(dim=self.dim, keepdim=True) + self.eps).rsqrt()
        return x * scale


class UpsamplingLayer(nn.Module):
    """Implements the upsampling layer.

    Basically, this layer can be used to upsample feature maps with nearest
    neighbor interpolation.
    """

    def __init__(self, scale_factor):
        super().__init__()
        self.scale_factor = scale_factor

    def extra_repr(self):
        return f'factor={self.scale_factor}'

    def forward(self, x):
        if self.scale_factor <= 1:
            return x
        return F.interpolate(x, scale_factor=self.scale_factor, mode='nearest')


class ConvLayer(nn.Module):
    """Implements the convolutional layer.

    Basically, this layer executes pixel-wise normalization, upsampling (if
    needed), convolution, and activation in sequence.
    """

    def __init__(self,
                 in_channels,
                 out_channels,
                 kernel_size,
                 padding,
                 add_bias,
                 upsample,
                 fused_scale,
                 use_wscale,
                 wscale_gain,
                 activation_type,
                 eps):
        """Initializes with layer settings.

        Args:
            in_channels: Number of channels of the input tensor.
            out_channels: Number of channels of the output tensor.
            kernel_size: Size of the convolutional kernels.
            padding: Padding used in convolution.
            add_bias: Whether to add bias onto the convolutional result.
            upsample: Whether to upsample the input tensor before convolution.
            fused_scale: Whether to fused `upsample` and `conv2d` together,
                resulting in `conv2d_transpose`.
            use_wscale: Whether to use weight scaling.
            wscale_gain: Gain factor for weight scaling.
            activation_type: Type of activation.
            eps: A small value to avoid divide overflow.
        """
        super().__init__()
        self.in_channels = in_channels
        self.out_channels = out_channels
        self.kernel_size = kernel_size
        self.padding = padding
        self.add_bias = add_bias
        self.upsample = upsample
        self.fused_scale = fused_scale
        self.use_wscale = use_wscale
        self.wscale_gain = wscale_gain
        self.activation_type = activation_type
        self.eps = eps

        self.pixel_norm = PixelNormLayer(dim=1, eps=eps)

        if upsample and not fused_scale:
            self.up = UpsamplingLayer(scale_factor=2)
        else:
            self.up = nn.Identity()

        if upsample and fused_scale:
            self.use_conv2d_transpose = True
            weight_shape = (in_channels, out_channels, kernel_size, kernel_size)
            self.stride = 2
            self.padding = 1
        else:
            self.use_conv2d_transpose = False
            weight_shape = (out_channels, in_channels, kernel_size, kernel_size)
            self.stride = 1

        fan_in = kernel_size * kernel_size * in_channels
        wscale = wscale_gain / np.sqrt(fan_in)
        if use_wscale:
            self.weight = nn.Parameter(torch.randn(*weight_shape))
            self.wscale = wscale
        else:
            self.weight = nn.Parameter(torch.randn(*weight_shape) * wscale)
            self.wscale = 1.0

        if add_bias:
            self.bias = nn.Parameter(torch.zeros(out_channels))
        else:
            self.bias = None

        assert activation_type in ['linear', 'relu', 'lrelu']

    def extra_repr(self):
        return (f'in_ch={self.in_channels}, '
                f'out_ch={self.out_channels}, '
                f'ksize={self.kernel_size}, '
                f'padding={self.padding}, '
                f'wscale_gain={self.wscale_gain:.3f}, '
                f'bias={self.add_bias}, '
                f'upsample={self.scale_factor}, '
                f'fused_scale={self.fused_scale}, '
                f'act={self.activation_type}')

    def forward(self, x):
        x = self.pixel_norm(x)
        x = self.up(x)
        weight = self.weight
        if self.wscale != 1.0:
            weight = weight * self.wscale
        if self.use_conv2d_transpose:
            weight = F.pad(weight, (1, 1, 1, 1, 0, 0, 0, 0), 'constant', 0.0)
            weight = (weight[:, :, 1:, 1:] + weight[:, :, :-1, 1:] +
                      weight[:, :, 1:, :-1] + weight[:, :, :-1, :-1])
            x = F.conv_transpose2d(x,
                                   weight=weight,
                                   bias=self.bias,
                                   stride=self.stride,
                                   padding=self.padding)
        else:
            x = F.conv2d(x,
                         weight=weight,
                         bias=self.bias,
                         stride=self.stride,
                         padding=self.padding)

        if self.activation_type == 'linear':
            pass
        elif self.activation_type == 'relu':
            x = F.relu(x, inplace=True)
        elif self.activation_type == 'lrelu':
            x = F.leaky_relu(x, negative_slope=0.2, inplace=True)
        else:
            raise NotImplementedError(f'Not implemented activation type '
                                      f'`{self.activation_type}`!')

        return x

# pylint: enable=missing-function-docstring