File size: 11,211 Bytes
2f85de4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 |
# python3.8
"""Contains the implementation of generator described in BEV3D."""
import torch
import torch.nn as nn
from models.utils.official_stylegan2_model_helper import Generator as StyleGAN2Backbone
from models.utils.official_stylegan2_model_helper import FullyConnectedLayer
from models.utils.eg3d_superres import SuperresolutionHybrid2X
from models.utils.eg3d_superres import SuperresolutionHybrid4X
from models.utils.eg3d_superres import SuperresolutionHybrid4X_conststyle
from models.utils.eg3d_superres import SuperresolutionHybrid8XDC
from models.rendering.renderer import Renderer
from models.rendering.feature_extractor import FeatureExtractor
from models.utils.spade import SPADEGenerator
class BEV3DGenerator(nn.Module):
def __init__(
self,
z_dim,
semantic_nc,
ngf,
bev_grid_size,
aspect_ratio,
num_upsampling_layers,
not_use_vae,
norm_G,
img_resolution,
interpolate_sr,
segmask=False,
dim_seq='16,8,4,2,1',
xyz_pe=False,
hidden_dim=64,
additional_layer_num=0,
sr_num_fp16_res=0, # Number of fp16 layers of SR Network.
rendering_kwargs={}, # Arguments for rendering.
sr_kwargs={}, # Arguments for SuperResolution Network.
):
super().__init__()
self.z_dim = z_dim
self.interpolate_sr = interpolate_sr
self.segmask = segmask
# Set up the overall renderer.
self.renderer = Renderer()
# Set up the feature extractor.
self.feature_extractor = FeatureExtractor(ref_mode='bev_plane_clevr', xyz_pe=xyz_pe)
# Set up the reference representation generator.
self.backbone = SPADEGenerator(z_dim=z_dim, semantic_nc=semantic_nc, ngf=ngf, dim_seq=dim_seq, bev_grid_size=bev_grid_size,
aspect_ratio=aspect_ratio, num_upsampling_layers=num_upsampling_layers,
not_use_vae=not_use_vae, norm_G=norm_G)
print('backbone SPADEGenerator set up!')
# Set up the post module in the feature extractor.
self.post_module = None
# Set up the post neural renderer.
self.post_neural_renderer = None
sr_kwargs_total = dict(
channels=32,
img_resolution=img_resolution,
sr_num_fp16_res=sr_num_fp16_res,
sr_antialias=rendering_kwargs['sr_antialias'],)
sr_kwargs_total.update(**sr_kwargs)
if img_resolution == 128:
self.post_neural_renderer = SuperresolutionHybrid2X(
**sr_kwargs_total)
elif img_resolution == 256:
self.post_neural_renderer = SuperresolutionHybrid4X_conststyle(
**sr_kwargs_total)
elif img_resolution == 512:
self.post_neural_renderer = SuperresolutionHybrid8XDC(
**sr_kwargs_total)
else:
raise TypeError(f'Unsupported image resolution: {img_resolution}!')
# Set up the fully-connected layer head.
self.fc_head = OSGDecoder(
128 if xyz_pe else 64 , {
'decoder_lr_mul': rendering_kwargs.get('decoder_lr_mul', 1),
'decoder_output_dim': 32
},
hidden_dim=hidden_dim,
additional_layer_num=additional_layer_num
)
# Set up some rendering related arguments.
self.neural_rendering_resolution = rendering_kwargs.get(
'resolution', 64)
self.rendering_kwargs = rendering_kwargs
def synthesis(self,
z,
c,
seg,
neural_rendering_resolution=None,
update_emas=False,
**synthesis_kwargs):
cam2world_matrix = c[:, :16].view(-1, 4, 4)
if self.rendering_kwargs.get('random_pose', False):
cam2world_matrix = None
if neural_rendering_resolution is None:
neural_rendering_resolution = self.neural_rendering_resolution
else:
self.neural_rendering_resolution = neural_rendering_resolution
xy_planes = self.backbone(z=z, input=seg)
if self.segmask:
xy_planes = xy_planes * seg[:, 0, ...][:, None, ...]
# import pdb;pdb.set_trace()
wp = z # in our case, we do not use wp.
rendering_result = self.renderer(
wp=wp,
feature_extractor=self.feature_extractor,
rendering_options=self.rendering_kwargs,
cam2world_matrix=cam2world_matrix,
position_encoder=None,
ref_representation=xy_planes,
post_module=self.post_module,
fc_head=self.fc_head)
feature_samples = rendering_result['composite_rgb']
depth_samples = rendering_result['composite_depth']
# Reshape to keep consistent with 'raw' neural-rendered image.
N = wp.shape[0]
H = W = self.neural_rendering_resolution
feature_image = feature_samples.permute(0, 2, 1).reshape(
N, feature_samples.shape[-1], H, W).contiguous()
depth_image = depth_samples.permute(0, 2, 1).reshape(N, 1, H, W)
# Run the post neural renderer to get final image.
# Here, the post neural renderer is a super-resolution network.
rgb_image = feature_image[:, :3]
if self.interpolate_sr:
sr_image = torch.nn.functional.interpolate(rgb_image, size=(256, 256), mode='bilinear', align_corners=False)
else:
sr_image = self.post_neural_renderer(
rgb_image,
feature_image,
# wp,
noise_mode=self.rendering_kwargs['superresolution_noise_mode'],
**{
k: synthesis_kwargs[k]
for k in synthesis_kwargs.keys() if k != 'noise_mode'
})
return {
'image': sr_image,
'image_raw': rgb_image,
'image_depth': depth_image
}
def sample(self,
coordinates,
directions,
z,
c,
seg,
truncation_psi=1,
truncation_cutoff=None,
update_emas=False,
**synthesis_kwargs):
# Compute RGB features, density for arbitrary 3D coordinates.
# Mostly used for extracting shapes.
cam2world_matrix = c[:, :16].view(-1, 4, 4)
xy_planes = self.backbone(z=z, input=seg)
wp = z
result = self.renderer.get_sigma_rgb(
wp=wp,
points=coordinates,
feature_extractor=self.feature_extractor,
fc_head=self.fc_head,
rendering_options=self.rendering_kwargs,
ref_representation=xy_planes,
post_module=self.post_module,
ray_dirs=directions,
cam_matrix=cam2world_matrix)
return result
def sample_mixed(self,
coordinates,
directions,
z, c, seg,
truncation_psi=1,
truncation_cutoff=None,
update_emas=False,
**synthesis_kwargs):
# Same as function `self.sample()`, but expects latent vectors 'wp'
# instead of Gaussian noise 'z'.
cam2world_matrix = c[:, :16].view(-1, 4, 4)
xy_planes = self.backbone(z=z, input=seg)
wp = z
result = self.renderer.get_sigma_rgb(
wp=wp,
points=coordinates,
feature_extractor=self.feature_extractor,
fc_head=self.fc_head,
rendering_options=self.rendering_kwargs,
ref_representation=xy_planes,
post_module=self.post_module,
ray_dirs=directions,
cam_matrix=cam2world_matrix)
return result
def forward(self,
z,
c,
seg,
c_swapped=None, # `c_swapped` is swapped pose conditioning.
style_mixing_prob=0,
truncation_psi=1,
truncation_cutoff=None,
neural_rendering_resolution=None,
update_emas=False,
sample_mixed=False,
coordinates=None,
**synthesis_kwargs):
# Render a batch of generated images.
c_wp = c.clone()
if c_swapped is not None:
c_wp = c_swapped.clone()
if not sample_mixed:
gen_output = self.synthesis(
z,
c,
seg,
update_emas=update_emas,
neural_rendering_resolution=neural_rendering_resolution,
**synthesis_kwargs)
return {
'wp': z,
'gen_output': gen_output,
}
else:
# Only for density regularization in training process.
assert coordinates is not None
sample_sigma = self.sample_mixed(coordinates,
torch.randn_like(coordinates),
z, c, seg,
update_emas=False)['sigma']
return {
'wp': z,
'sample_sigma': sample_sigma
}
class OSGDecoder(nn.Module):
"""Defines fully-connected layer head in EG3D."""
def __init__(self, n_features, options, hidden_dim=64, additional_layer_num=0):
super().__init__()
self.hidden_dim = hidden_dim
lst = []
lst.append(FullyConnectedLayer(n_features, self.hidden_dim, lr_multiplier=options['decoder_lr_mul']))
lst.append(nn.Softplus())
for i in range(additional_layer_num):
lst.append(FullyConnectedLayer(self.hidden_dim, self.hidden_dim, lr_multiplier=options['decoder_lr_mul']))
lst.append(nn.Softplus())
lst.append(FullyConnectedLayer(self.hidden_dim, 1+options['decoder_output_dim'], lr_multiplier=options['decoder_lr_mul']))
self.net = nn.Sequential(*lst)
# self.net = nn.Sequential(
# FullyConnectedLayer(n_features,
# self.hidden_dim,
# lr_multiplier=options['decoder_lr_mul']),
# nn.Softplus(),
# FullyConnectedLayer(self.hidden_dim,
# 1 + options['decoder_output_dim'],
# lr_multiplier=options['decoder_lr_mul']))
def forward(self, point_features, wp=None, dirs=None):
# Aggregate features
# point_features.shape: [N, R, K, C].
# Average across 'X, Y, Z' planes.
N, R, K, C = point_features.shape
x = point_features.reshape(-1, point_features.shape[-1])
x = self.net(x)
x = x.view(N, -1, x.shape[-1])
# Uses sigmoid clamping from MipNeRF
rgb = torch.sigmoid(x[..., 1:]) * (1 + 2 * 0.001) - 0.001
sigma = x[..., 0:1]
return {'rgb': rgb, 'sigma': sigma}
|