File size: 20,849 Bytes
2f85de4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 |
# python3.7
"""Contains the VGG16 model, which is used for inference ONLY.
VGG16 is commonly used for perceptual feature extraction. The model implemented
in this file can be used for evaluation (like computing LPIPS, perceptual path
length, etc.), OR be used in training for loss computation (like perceptual
loss, etc.).
The pre-trained model is officially shared by
https://www.robots.ox.ac.uk/~vgg/research/very_deep/
and ported by
https://nvlabs-fi-cdn.nvidia.com/stylegan2-ada-pytorch/pretrained/metrics/vgg16.pt
Compared to the official VGG16 model, this ported model also support evaluating
LPIPS, which is introduced in
https://github.com/richzhang/PerceptualSimilarity
"""
import warnings
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.distributed as dist
from utils.misc import download_url
__all__ = ['PerceptualModel']
# pylint: disable=line-too-long
_MODEL_URL_SHA256 = {
# This model is provided by `torchvision`, which is ported from TensorFlow.
'torchvision_official': (
'https://download.pytorch.org/models/vgg16-397923af.pth',
'397923af8e79cdbb6a7127f12361acd7a2f83e06b05044ddf496e83de57a5bf0' # hash sha256
),
# This model is provided by https://github.com/NVlabs/stylegan2-ada-pytorch
'vgg_perceptual_lpips': (
'https://nvlabs-fi-cdn.nvidia.com/stylegan2-ada-pytorch/pretrained/metrics/vgg16.pt',
'b437eb095feaeb0b83eb3fa11200ebca4548ee39a07fb944a417ddc516cc07c3' # hash sha256
)
}
# pylint: enable=line-too-long
class PerceptualModel(object):
"""Defines the perceptual model, which is based on VGG16 structure.
This is a static class, which is used to avoid this model to be built
repeatedly. Consequently, this model is particularly used for inference,
like computing LPIPS, or for loss computation, like perceptual loss. If
training is required, please use the model from `torchvision.models` or
implement by yourself.
NOTE: The pre-trained model assumes the inputs to be with `RGB` channel
order and pixel range [-1, 1], and will NOT resize the input automatically
if only perceptual feature is needed.
"""
models = dict()
@staticmethod
def build_model(use_torchvision=False, no_top=True, enable_lpips=True):
"""Builds the model and load pre-trained weights.
1. If `use_torchvision` is set as True, the model released by
`torchvision` will be loaded, otherwise, the model released by
https://www.robots.ox.ac.uk/~vgg/research/very_deep/ will be used.
(default: False)
2. To save computing resources, these is an option to only load the
backbone (i.e., without the last three fully-connected layers). This
is commonly used for perceptual loss or LPIPS loss computation.
Please use argument `no_top` to control this. (default: True)
3. For LPIPS loss computation, some additional weights (which is used
for balancing the features from different resolutions) are employed
on top of the original VGG16 backbone. Details can be found at
https://github.com/richzhang/PerceptualSimilarity. Please use
`enable_lpips` to enable this feature. (default: True)
The built model supports following arguments when forwarding:
- resize_input: Whether to resize the input image to size [224, 224]
before forwarding. For feature-based computation (i.e., only
convolutional layers are used), image resizing is not essential.
(default: False)
- return_tensor: This field resolves the model behavior. Following
options are supported:
`feature1`: Before the first max pooling layer.
`pool1`: After the first max pooling layer.
`feature2`: Before the second max pooling layer.
`pool2`: After the second max pooling layer.
`feature3`: Before the third max pooling layer.
`pool3`: After the third max pooling layer.
`feature4`: Before the fourth max pooling layer.
`pool4`: After the fourth max pooling layer.
`feature5`: Before the fifth max pooling layer.
`pool5`: After the fifth max pooling layer.
`flatten`: The flattened feature, after `adaptive_avgpool`.
`feature`: The 4096d feature for logits computation. (default)
`logits`: The 1000d categorical logits.
`prediction`: The 1000d predicted probability.
`lpips`: The LPIPS score between two input images.
"""
if use_torchvision:
model_source = 'torchvision_official'
align_tf_resize = False
is_torch_script = False
else:
model_source = 'vgg_perceptual_lpips'
align_tf_resize = True
is_torch_script = True
if enable_lpips and model_source != 'vgg_perceptual_lpips':
warnings.warn('The pre-trained model officially released by '
'`torchvision` does not support LPIPS computation! '
'Equal weights will be used for each resolution.')
fingerprint = (model_source, no_top, enable_lpips)
if fingerprint not in PerceptualModel.models:
# Build model.
model = VGG16(align_tf_resize=align_tf_resize,
no_top=no_top,
enable_lpips=enable_lpips)
# Download pre-trained weights.
if dist.is_initialized() and dist.get_rank() != 0:
dist.barrier() # Download by chief.
url, sha256 = _MODEL_URL_SHA256[model_source]
filename = f'perceptual_model_{model_source}_{sha256}.pth'
model_path, hash_check = download_url(url,
filename=filename,
sha256=sha256)
if is_torch_script:
src_state_dict = torch.jit.load(model_path, map_location='cpu')
else:
src_state_dict = torch.load(model_path, map_location='cpu')
if hash_check is False:
warnings.warn(f'Hash check failed! The remote file from URL '
f'`{url}` may be changed, or the downloading is '
f'interrupted. The loaded perceptual model may '
f'have unexpected behavior.')
if dist.is_initialized() and dist.get_rank() == 0:
dist.barrier() # Wait for other replicas.
# Load weights.
dst_state_dict = _convert_weights(src_state_dict, model_source)
model.load_state_dict(dst_state_dict, strict=False)
del src_state_dict, dst_state_dict
# For inference only.
model.eval().requires_grad_(False).cuda()
PerceptualModel.models[fingerprint] = model
return PerceptualModel.models[fingerprint]
def _convert_weights(src_state_dict, model_source):
if model_source not in _MODEL_URL_SHA256:
raise ValueError(f'Invalid model source `{model_source}`!\n'
f'Sources allowed: {list(_MODEL_URL_SHA256.keys())}.')
if model_source == 'torchvision_official':
dst_to_src_var_mapping = {
'conv11.weight': 'features.0.weight',
'conv11.bias': 'features.0.bias',
'conv12.weight': 'features.2.weight',
'conv12.bias': 'features.2.bias',
'conv21.weight': 'features.5.weight',
'conv21.bias': 'features.5.bias',
'conv22.weight': 'features.7.weight',
'conv22.bias': 'features.7.bias',
'conv31.weight': 'features.10.weight',
'conv31.bias': 'features.10.bias',
'conv32.weight': 'features.12.weight',
'conv32.bias': 'features.12.bias',
'conv33.weight': 'features.14.weight',
'conv33.bias': 'features.14.bias',
'conv41.weight': 'features.17.weight',
'conv41.bias': 'features.17.bias',
'conv42.weight': 'features.19.weight',
'conv42.bias': 'features.19.bias',
'conv43.weight': 'features.21.weight',
'conv43.bias': 'features.21.bias',
'conv51.weight': 'features.24.weight',
'conv51.bias': 'features.24.bias',
'conv52.weight': 'features.26.weight',
'conv52.bias': 'features.26.bias',
'conv53.weight': 'features.28.weight',
'conv53.bias': 'features.28.bias',
'fc1.weight': 'classifier.0.weight',
'fc1.bias': 'classifier.0.bias',
'fc2.weight': 'classifier.3.weight',
'fc2.bias': 'classifier.3.bias',
'fc3.weight': 'classifier.6.weight',
'fc3.bias': 'classifier.6.bias',
}
elif model_source == 'vgg_perceptual_lpips':
src_state_dict = src_state_dict.state_dict()
dst_to_src_var_mapping = {
'conv11.weight': 'layers.conv1.weight',
'conv11.bias': 'layers.conv1.bias',
'conv12.weight': 'layers.conv2.weight',
'conv12.bias': 'layers.conv2.bias',
'conv21.weight': 'layers.conv3.weight',
'conv21.bias': 'layers.conv3.bias',
'conv22.weight': 'layers.conv4.weight',
'conv22.bias': 'layers.conv4.bias',
'conv31.weight': 'layers.conv5.weight',
'conv31.bias': 'layers.conv5.bias',
'conv32.weight': 'layers.conv6.weight',
'conv32.bias': 'layers.conv6.bias',
'conv33.weight': 'layers.conv7.weight',
'conv33.bias': 'layers.conv7.bias',
'conv41.weight': 'layers.conv8.weight',
'conv41.bias': 'layers.conv8.bias',
'conv42.weight': 'layers.conv9.weight',
'conv42.bias': 'layers.conv9.bias',
'conv43.weight': 'layers.conv10.weight',
'conv43.bias': 'layers.conv10.bias',
'conv51.weight': 'layers.conv11.weight',
'conv51.bias': 'layers.conv11.bias',
'conv52.weight': 'layers.conv12.weight',
'conv52.bias': 'layers.conv12.bias',
'conv53.weight': 'layers.conv13.weight',
'conv53.bias': 'layers.conv13.bias',
'fc1.weight': 'layers.fc1.weight',
'fc1.bias': 'layers.fc1.bias',
'fc2.weight': 'layers.fc2.weight',
'fc2.bias': 'layers.fc2.bias',
'fc3.weight': 'layers.fc3.weight',
'fc3.bias': 'layers.fc3.bias',
'lpips.0.weight': 'lpips0',
'lpips.1.weight': 'lpips1',
'lpips.2.weight': 'lpips2',
'lpips.3.weight': 'lpips3',
'lpips.4.weight': 'lpips4',
}
else:
raise NotImplementedError(f'Not implemented model source '
f'`{model_source}`!')
dst_state_dict = {}
for dst_name, src_name in dst_to_src_var_mapping.items():
if dst_name.startswith('lpips'):
dst_state_dict[dst_name] = src_state_dict[src_name].unsqueeze(0)
else:
dst_state_dict[dst_name] = src_state_dict[src_name].clone()
return dst_state_dict
_IMG_MEAN = (0.485, 0.456, 0.406)
_IMG_STD = (0.229, 0.224, 0.225)
_ALLOWED_RETURN = [
'feature1', 'pool1', 'feature2', 'pool2', 'feature3', 'pool3', 'feature4',
'pool4', 'feature5', 'pool5', 'flatten', 'feature', 'logits', 'prediction',
'lpips'
]
# pylint: disable=missing-function-docstring
class VGG16(nn.Module):
"""Defines the VGG16 structure.
This model takes `RGB` images with data format `NCHW` as the raw inputs. The
pixel range are assumed to be [-1, 1].
"""
def __init__(self, align_tf_resize=False, no_top=True, enable_lpips=True):
"""Defines the network structure."""
super().__init__()
self.align_tf_resize = align_tf_resize
self.no_top = no_top
self.enable_lpips = enable_lpips
self.conv11 = nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1)
self.relu11 = nn.ReLU(inplace=True)
self.conv12 = nn.Conv2d(64, 64, kernel_size=3, stride=1, padding=1)
self.relu12 = nn.ReLU(inplace=True)
# output `feature1`, with shape [N, 64, 224, 224]
self.pool1 = nn.MaxPool2d(kernel_size=2, stride=2)
# output `pool1`, with shape [N, 64, 112, 112]
self.conv21 = nn.Conv2d(64, 128, kernel_size=3, stride=1, padding=1)
self.relu21 = nn.ReLU(inplace=True)
self.conv22 = nn.Conv2d(128, 128, kernel_size=3, stride=1, padding=1)
self.relu22 = nn.ReLU(inplace=True)
# output `feature2`, with shape [N, 128, 112, 112]
self.pool2 = nn.MaxPool2d(kernel_size=2, stride=2)
# output `pool2`, with shape [N, 128, 56, 56]
self.conv31 = nn.Conv2d(128, 256, kernel_size=3, stride=1, padding=1)
self.relu31 = nn.ReLU(inplace=True)
self.conv32 = nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1)
self.relu32 = nn.ReLU(inplace=True)
self.conv33 = nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1)
self.relu33 = nn.ReLU(inplace=True)
# output `feature3`, with shape [N, 256, 56, 56]
self.pool3 = nn.MaxPool2d(kernel_size=2, stride=2)
# output `pool3`, with shape [N,256, 28, 28]
self.conv41 = nn.Conv2d(256, 512, kernel_size=3, stride=1, padding=1)
self.relu41 = nn.ReLU(inplace=True)
self.conv42 = nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1)
self.relu42 = nn.ReLU(inplace=True)
self.conv43 = nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1)
self.relu43 = nn.ReLU(inplace=True)
# output `feature4`, with shape [N, 512, 28, 28]
self.pool4 = nn.MaxPool2d(kernel_size=2, stride=2)
# output `pool4`, with shape [N, 512, 14, 14]
self.conv51 = nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1)
self.relu51 = nn.ReLU(inplace=True)
self.conv52 = nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1)
self.relu52 = nn.ReLU(inplace=True)
self.conv53 = nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1)
self.relu53 = nn.ReLU(inplace=True)
# output `feature5`, with shape [N, 512, 14, 14]
self.pool5 = nn.MaxPool2d(kernel_size=2, stride=2)
# output `pool5`, with shape [N, 512, 7, 7]
if self.enable_lpips:
self.lpips = nn.ModuleList()
for idx, ch in enumerate([64, 128, 256, 512, 512]):
self.lpips.append(nn.Conv2d(ch, 1, kernel_size=1, bias=False))
self.lpips[idx].weight.data.copy_(torch.ones(1, ch, 1, 1))
if not self.no_top:
self.avgpool = nn.AdaptiveAvgPool2d((7, 7))
self.flatten = nn.Flatten(start_dim=1, end_dim=-1)
# output `flatten`, with shape [N, 25088]
self.fc1 = nn.Linear(512 * 7 * 7, 4096)
self.fc1_relu = nn.ReLU(inplace=True)
self.fc1_dropout = nn.Dropout(0.5, inplace=False)
self.fc2 = nn.Linear(4096, 4096)
self.fc2_relu = nn.ReLU(inplace=True)
self.fc2_dropout = nn.Dropout(0.5, inplace=False)
# output `feature`, with shape [N, 4096]
self.fc3 = nn.Linear(4096, 1000)
# output `logits`, with shape [N, 1000]
self.out = nn.Softmax(dim=1)
# output `softmax`, with shape [N, 1000]
img_mean = np.array(_IMG_MEAN).reshape((1, 3, 1, 1)).astype(np.float32)
img_std = np.array(_IMG_STD).reshape((1, 3, 1, 1)).astype(np.float32)
self.register_buffer('img_mean', torch.from_numpy(img_mean))
self.register_buffer('img_std', torch.from_numpy(img_std))
def forward(self,
x,
y=None,
*,
resize_input=False,
return_tensor='feature'):
return_tensor = return_tensor.lower()
if return_tensor not in _ALLOWED_RETURN:
raise ValueError(f'Invalid output tensor name `{return_tensor}` '
f'for perceptual model (VGG16)!\n'
f'Names allowed: {_ALLOWED_RETURN}.')
if return_tensor == 'lpips' and y is None:
raise ValueError('Two images are required for LPIPS computation, '
'but only one is received!')
if return_tensor == 'lpips':
assert x.shape == y.shape
x = torch.cat([x, y], dim=0)
features = []
if resize_input:
if self.align_tf_resize:
theta = torch.eye(2, 3).to(x)
theta[0, 2] += theta[0, 0] / x.shape[3] - theta[0, 0] / 224
theta[1, 2] += theta[1, 1] / x.shape[2] - theta[1, 1] / 224
theta = theta.unsqueeze(0).repeat(x.shape[0], 1, 1)
grid = F.affine_grid(theta,
size=(x.shape[0], x.shape[1], 224, 224),
align_corners=False)
x = F.grid_sample(x, grid,
mode='bilinear',
padding_mode='border',
align_corners=False)
else:
x = F.interpolate(x,
size=(224, 224),
mode='bilinear',
align_corners=False)
if x.shape[1] == 1:
x = x.repeat((1, 3, 1, 1))
x = (x + 1) / 2
x = (x - self.img_mean) / self.img_std
x = self.conv11(x)
x = self.relu11(x)
x = self.conv12(x)
x = self.relu12(x)
if return_tensor == 'feature1':
return x
if return_tensor == 'lpips':
features.append(x)
x = self.pool1(x)
if return_tensor == 'pool1':
return x
x = self.conv21(x)
x = self.relu21(x)
x = self.conv22(x)
x = self.relu22(x)
if return_tensor == 'feature2':
return x
if return_tensor == 'lpips':
features.append(x)
x = self.pool2(x)
if return_tensor == 'pool2':
return x
x = self.conv31(x)
x = self.relu31(x)
x = self.conv32(x)
x = self.relu32(x)
x = self.conv33(x)
x = self.relu33(x)
if return_tensor == 'feature3':
return x
if return_tensor == 'lpips':
features.append(x)
x = self.pool3(x)
if return_tensor == 'pool3':
return x
x = self.conv41(x)
x = self.relu41(x)
x = self.conv42(x)
x = self.relu42(x)
x = self.conv43(x)
x = self.relu43(x)
if return_tensor == 'feature4':
return x
if return_tensor == 'lpips':
features.append(x)
x = self.pool4(x)
if return_tensor == 'pool4':
return x
x = self.conv51(x)
x = self.relu51(x)
x = self.conv52(x)
x = self.relu52(x)
x = self.conv53(x)
x = self.relu53(x)
if return_tensor == 'feature5':
return x
if return_tensor == 'lpips':
features.append(x)
x = self.pool5(x)
if return_tensor == 'pool5':
return x
if return_tensor == 'lpips':
score = 0
assert len(features) == 5
for idx in range(5):
feature = features[idx]
norm = feature.norm(dim=1, keepdim=True)
feature = feature / (norm + 1e-10)
feature_x, feature_y = feature.chunk(2, dim=0)
diff = (feature_x - feature_y).square()
score += self.lpips[idx](diff).mean(dim=(2, 3), keepdim=False)
return score.sum(dim=1, keepdim=False)
x = self.avgpool(x)
x = self.flatten(x)
if return_tensor == 'flatten':
return x
x = self.fc1(x)
x = self.fc1_relu(x)
x = self.fc1_dropout(x)
x = self.fc2(x)
x = self.fc2_relu(x)
x = self.fc2_dropout(x)
if return_tensor == 'feature':
return x
x = self.fc3(x)
if return_tensor == 'logits':
return x
x = self.out(x)
if return_tensor == 'prediction':
return x
raise NotImplementedError(f'Output tensor name `{return_tensor}` is '
f'not implemented!')
# pylint: enable=missing-function-docstring
|