File size: 32,045 Bytes
2f85de4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 |
# python3.7
"""Contains the implementation of discriminator described in VolumeGAN.
Paper: https://arxiv.org/pdf/2112.10759.pdf
"""
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from third_party.stylegan2_official_ops import bias_act
from third_party.stylegan2_official_ops import upfirdn2d
from third_party.stylegan2_official_ops import conv2d_gradfix
__all__ = ['VolumeGANDiscriminator']
# Resolutions allowed.
_RESOLUTIONS_ALLOWED = [8, 16, 32, 64, 128, 256, 512, 1024]
# Architectures allowed.
_ARCHITECTURES_ALLOWED = ['resnet', 'skip', 'origin']
class VolumeGANDiscriminator(nn.Module):
"""Defines the discriminator network in VolumeGAN.
NOTE: The discriminator takes images with `RGB` channel order and pixel
range [-1, 1] as inputs.
Settings for the backbone:
(1) resolution: The resolution of the input image. (default: -1)
(2) init_res: The initial resolution to start with convolution. (default: 4)
(3) image_channels: Number of channels of the input image. (default: 3)
(4) architecture: Type of architecture. Support `origin`, `skip`, and
`resnet`. (default: `resnet`)
(5) use_wscale: Whether to use weight scaling. (default: True)
(6) wscale_gain: The factor to control weight scaling. (default: 1.0)
(7) lr_mul: Learning rate multiplier for backbone. (default: 1.0)
(8) mbstd_groups: Group size for the minibatch standard deviation layer.
`0` means disable. (default: 4)
(9) mbstd_channels: Number of new channels (appended to the original feature
map) after the minibatch standard deviation layer. (default: 1)
(10) fmaps_base: Factor to control number of feature maps for each layer.
(default: 32 << 10)
(11) fmaps_max: Maximum number of feature maps in each layer. (default: 512)
(12) filter_kernel: Kernel used for filtering (e.g., downsampling).
(default: (1, 3, 3, 1))
(13) conv_clamp: A threshold to clamp the output of convolution layers to
avoid overflow under FP16 training. (default: None)
(14) eps: A small value to avoid divide overflow. (default: 1e-8)
Settings for conditional model:
(1) label_dim: Dimension of the additional label for conditional generation.
In one-hot conditioning case, it is equal to the number of classes. If
set to 0, conditioning training will be disabled. (default: 0)
(2) embedding_dim: Dimension of the embedding space, if needed.
(default: 512)
(3) embedding_bias: Whether to add bias to embedding learning.
(default: True)
(4) embedding_use_wscale: Whether to use weight scaling for embedding
learning. (default: True)
(5) embedding_lr_mul: Learning rate multiplier for the embedding learning.
(default: 1.0)
(6) normalize_embedding: Whether to normalize the embedding. (default: True)
(7) mapping_layers: Number of layers of the additional mapping network after
embedding. (default: 0)
(8) mapping_fmaps: Number of hidden channels of the additional mapping
network after embedding. (default: 512)
(9) mapping_use_wscale: Whether to use weight scaling for the additional
mapping network. (default: True)
(10) mapping_lr_mul: Learning rate multiplier for the additional mapping
network after embedding. (default: 0.1)
Runtime settings:
(1) fp16_res: Layers at resolution higher than (or equal to) this field will
use `float16` precision for computation. This is merely used for
acceleration. If set as `None`, all layers will use `float32` by
default. (default: None)
(2) impl: Implementation mode of some particular ops, e.g., `filtering`,
`bias_act`, etc. `cuda` means using the official CUDA implementation
from StyleGAN2, while `ref` means using the native PyTorch ops.
(default: `cuda`)
"""
def __init__(self,
# Settings for backbone.
resolution=-1,
init_res=4,
image_channels=3,
architecture='resnet',
use_wscale=True,
wscale_gain=1.0,
lr_mul=1.0,
mbstd_groups=4,
mbstd_channels=1,
fmaps_base=32 << 10,
fmaps_max=512,
filter_kernel=(1, 3, 3, 1),
conv_clamp=None,
eps=1e-8,
# Settings for conditional model.
label_dim=0,
embedding_dim=512,
embedding_bias=True,
embedding_use_wscale=True,
embedding_lr_mul=1.0,
normalize_embedding=True,
mapping_layers=0,
mapping_fmaps=512,
mapping_use_wscale=True,
mapping_lr_mul=0.1):
"""Initializes with basic settings.
Raises:
ValueError: If the `resolution` is not supported, or `architecture`
is not supported.
"""
super().__init__()
if resolution not in _RESOLUTIONS_ALLOWED:
raise ValueError(f'Invalid resolution: `{resolution}`!\n'
f'Resolutions allowed: {_RESOLUTIONS_ALLOWED}.')
architecture = architecture.lower()
if architecture not in _ARCHITECTURES_ALLOWED:
raise ValueError(f'Invalid architecture: `{architecture}`!\n'
f'Architectures allowed: '
f'{_ARCHITECTURES_ALLOWED}.')
self.init_res = init_res
self.init_res_log2 = int(np.log2(init_res))
self.resolution = resolution
self.final_res_log2 = int(np.log2(resolution))
self.image_channels = image_channels
self.architecture = architecture
self.use_wscale = use_wscale
self.wscale_gain = wscale_gain
self.lr_mul = lr_mul
self.mbstd_groups = mbstd_groups
self.mbstd_channels = mbstd_channels
self.fmaps_base = fmaps_base
self.fmaps_max = fmaps_max
self.filter_kernel = filter_kernel
self.conv_clamp = conv_clamp
self.eps = eps
self.label_dim = label_dim
self.embedding_dim = embedding_dim
self.embedding_bias = embedding_bias
self.embedding_use_wscale = embedding_use_wscale
self.embedding_lr_mul = embedding_lr_mul
self.normalize_embedding = normalize_embedding
self.mapping_layers = mapping_layers
self.mapping_fmaps = mapping_fmaps
self.mapping_use_wscale = mapping_use_wscale
self.mapping_lr_mul = mapping_lr_mul
self.pth_to_tf_var_mapping = {}
self.register_buffer('lod', torch.zeros(()))
# Embedding for conditional discrimination.
self.use_embedding = label_dim > 0 and embedding_dim > 0
if self.use_embedding:
self.embedding = DenseLayer(in_channels=label_dim,
out_channels=embedding_dim,
add_bias=embedding_bias,
init_bias=0.0,
use_wscale=embedding_use_wscale,
wscale_gain=wscale_gain,
lr_mul=embedding_lr_mul,
activation_type='linear')
self.pth_to_tf_var_mapping['embedding.weight'] = 'LabelEmbed/weight'
if self.embedding_bias:
self.pth_to_tf_var_mapping['embedding.bias'] = 'LabelEmbed/bias'
if self.normalize_embedding:
self.norm = PixelNormLayer(dim=1, eps=eps)
for i in range(mapping_layers):
in_channels = (embedding_dim if i == 0 else mapping_fmaps)
out_channels = (embedding_dim if i == (mapping_layers - 1) else
mapping_fmaps)
layer_name = f'mapping{i}'
self.add_module(layer_name,
DenseLayer(in_channels=in_channels,
out_channels=out_channels,
add_bias=True,
init_bias=0.0,
use_wscale=mapping_use_wscale,
wscale_gain=wscale_gain,
lr_mul=mapping_lr_mul,
activation_type='lrelu'))
self.pth_to_tf_var_mapping[f'{layer_name}.weight'] = (
f'Mapping{i}/weight')
self.pth_to_tf_var_mapping[f'{layer_name}.bias'] = (
f'Mapping{i}/bias')
# Convolutional backbone.
for res_log2 in range(self.final_res_log2, self.init_res_log2 - 1, -1):
res = 2 ** res_log2
in_channels = self.get_nf(res)
out_channels = self.get_nf(res // 2)
block_idx = self.final_res_log2 - res_log2
# Input convolution layer for each resolution (if needed).
layer_name = f'input{block_idx}'
self.add_module(layer_name,
ConvLayer(in_channels=image_channels,
out_channels=in_channels,
kernel_size=1,
add_bias=True,
scale_factor=1,
filter_kernel=None,
use_wscale=use_wscale,
wscale_gain=wscale_gain,
lr_mul=lr_mul,
activation_type='lrelu',
conv_clamp=conv_clamp))
self.pth_to_tf_var_mapping[f'{layer_name}.weight'] = (
f'{res}x{res}/FromRGB/weight')
self.pth_to_tf_var_mapping[f'{layer_name}.bias'] = (
f'{res}x{res}/FromRGB/bias')
# Convolution block for each resolution (except the last one).
if res != self.init_res:
# First layer (kernel 3x3) without downsampling.
layer_name = f'layer{2 * block_idx}'
self.add_module(layer_name,
ConvLayer(in_channels=in_channels,
out_channels=in_channels,
kernel_size=3,
add_bias=True,
scale_factor=1,
filter_kernel=None,
use_wscale=use_wscale,
wscale_gain=wscale_gain,
lr_mul=lr_mul,
activation_type='lrelu',
conv_clamp=conv_clamp))
self.pth_to_tf_var_mapping[f'{layer_name}.weight'] = (
f'{res}x{res}/Conv0/weight')
self.pth_to_tf_var_mapping[f'{layer_name}.bias'] = (
f'{res}x{res}/Conv0/bias')
# Second layer (kernel 3x3) with downsampling
layer_name = f'layer{2 * block_idx + 1}'
self.add_module(layer_name,
ConvLayer(in_channels=in_channels,
out_channels=out_channels,
kernel_size=3,
add_bias=True,
scale_factor=2,
filter_kernel=filter_kernel,
use_wscale=use_wscale,
wscale_gain=wscale_gain,
lr_mul=lr_mul,
activation_type='lrelu',
conv_clamp=conv_clamp))
self.pth_to_tf_var_mapping[f'{layer_name}.weight'] = (
f'{res}x{res}/Conv1_down/weight')
self.pth_to_tf_var_mapping[f'{layer_name}.bias'] = (
f'{res}x{res}/Conv1_down/bias')
# Residual branch (kernel 1x1) with downsampling, without bias,
# with linear activation.
if self.architecture == 'resnet':
layer_name = f'residual{block_idx}'
self.add_module(layer_name,
ConvLayer(in_channels=in_channels,
out_channels=out_channels,
kernel_size=1,
add_bias=False,
scale_factor=2,
filter_kernel=filter_kernel,
use_wscale=use_wscale,
wscale_gain=wscale_gain,
lr_mul=lr_mul,
activation_type='linear',
conv_clamp=None))
self.pth_to_tf_var_mapping[f'{layer_name}.weight'] = (
f'{res}x{res}/Skip/weight')
# Convolution block for last resolution.
else:
self.mbstd = MiniBatchSTDLayer(
groups=mbstd_groups, new_channels=mbstd_channels, eps=eps)
# First layer (kernel 3x3) without downsampling.
layer_name = f'layer{2 * block_idx}'
self.add_module(
layer_name,
ConvLayer(in_channels=in_channels + mbstd_channels,
out_channels=in_channels,
kernel_size=3,
add_bias=True,
scale_factor=1,
filter_kernel=None,
use_wscale=use_wscale,
wscale_gain=wscale_gain,
lr_mul=lr_mul,
activation_type='lrelu',
conv_clamp=conv_clamp))
self.pth_to_tf_var_mapping[f'{layer_name}.weight'] = (
f'{res}x{res}/Conv/weight')
self.pth_to_tf_var_mapping[f'{layer_name}.bias'] = (
f'{res}x{res}/Conv/bias')
# Second layer, as a fully-connected layer.
layer_name = f'layer{2 * block_idx + 1}'
self.add_module(layer_name,
DenseLayer(in_channels=in_channels * res * res,
out_channels=in_channels,
add_bias=True,
init_bias=0.0,
use_wscale=use_wscale,
wscale_gain=wscale_gain,
lr_mul=lr_mul,
activation_type='lrelu'))
self.pth_to_tf_var_mapping[f'{layer_name}.weight'] = (
f'{res}x{res}/Dense0/weight')
self.pth_to_tf_var_mapping[f'{layer_name}.bias'] = (
f'{res}x{res}/Dense0/bias')
# Final dense layer to output score.
self.output = DenseLayer(in_channels=in_channels,
out_channels=(embedding_dim
if self.use_embedding
else max(label_dim, 1)),
add_bias=True,
init_bias=0.0,
use_wscale=use_wscale,
wscale_gain=wscale_gain,
lr_mul=lr_mul,
activation_type='linear')
self.pth_to_tf_var_mapping['output.weight'] = 'Output/weight'
self.pth_to_tf_var_mapping['output.bias'] = 'Output/bias'
# Used for downsampling input image for `skip` architecture.
if self.architecture == 'skip':
self.register_buffer(
'filter', upfirdn2d.setup_filter(filter_kernel))
def get_nf(self, res):
"""Gets number of feature maps according to current resolution."""
return min(self.fmaps_base // res, self.fmaps_max)
def forward(self, image, lod=None, label=None, fp16_res=None, impl='cuda'):
# Check shape.
expected_shape = (self.image_channels, self.resolution, self.resolution)
if image.ndim != 4 or image.shape[1:] != expected_shape:
raise ValueError(f'The input tensor should be with shape '
f'[batch_size, channel, height, width], where '
f'`channel` equals to {self.image_channels}, '
f'`height`, `width` equal to {self.resolution}!\n'
f'But `{image.shape}` is received!')
if self.label_dim > 0:
if label is None:
raise ValueError(f'Model requires an additional label '
f'(with dimension {self.label_dim}) as input, '
f'but no label is received!')
batch_size = image.shape[0]
if label.ndim != 2 or label.shape != (batch_size, self.label_dim):
raise ValueError(f'Input label should be with shape '
f'[batch_size, label_dim], where '
f'`batch_size` equals to that of '
f'images ({image.shape[0]}) and '
f'`label_dim` equals to {self.label_dim}!\n'
f'But `{label.shape}` is received!')
label = label.to(dtype=torch.float32)
if self.use_embedding:
embed = self.embedding(label, impl=impl)
if self.normalize_embedding:
embed = self.norm(embed)
for i in range(self.mapping_layers):
embed = getattr(self, f'mapping{i}')(embed, impl=impl)
# Cast to `torch.float16` if needed.
if fp16_res is not None and self.resolution >= fp16_res:
image = image.to(torch.float16)
lod = self.lod.item() if lod is None else lod
x = self.input0(image, impl=impl)
for res_log2 in range(self.final_res_log2, self.init_res_log2, -1):
res = 2 ** res_log2
# Cast to `torch.float16` if needed.
if fp16_res is not None and res >= fp16_res:
x = x.to(torch.float16)
else:
x = x.to(torch.float32)
idx = cur_lod = self.final_res_log2 - res_log2 # Block index
if cur_lod <= lod < cur_lod + 1:
x = getattr(self, f'input{idx}')(image, impl=impl)
elif cur_lod - 1 < lod < cur_lod:
alpha = lod - np.floor(lod)
y = getattr(self, f'input{idx}')(image, impl=impl)
x = y * alpha + x * (1 - alpha)
if lod < cur_lod + 1:
if self.architecture == 'skip' and idx > 0:
image = upfirdn2d.downsample2d(image, self.filter, impl=impl)
# Cast to `torch.float16` if needed.
if fp16_res is not None and res >= fp16_res:
image = image.to(torch.float16)
else:
image = image.to(torch.float32)
y = getattr(self, f'input{idx}')(image, impl=impl)
x = x + y
if self.architecture == 'resnet':
residual = getattr(self, f'residual{idx}')(
x, runtime_gain=np.sqrt(0.5), impl=impl)
x = getattr(self, f'layer{2 * idx}')(x, impl=impl)
x = getattr(self, f'layer{2 * idx + 1}')(
x, runtime_gain=np.sqrt(0.5), impl=impl)
x = x + residual
else:
x = getattr(self, f'layer{2 * idx}')(x, impl=impl)
x = getattr(self, f'layer{2 * idx + 1}')(x, impl=impl)
if lod > cur_lod:
image = F.avg_pool2d(
image, kernel_size=2, stride=2, padding=0)
# Final output.
if fp16_res is not None: # Always use FP32 for the last block.
x = x.to(torch.float32)
if self.architecture == 'skip':
image = upfirdn2d.downsample2d(image, self.filter, impl=impl)
if fp16_res is not None: # Always use FP32 for the last block.
image = image.to(torch.float32)
y = getattr(self, f'input{idx}')(image, impl=impl)
x = x + y
x = self.mbstd(x)
x = getattr(self, f'layer{2 * idx + 2}')(x, impl=impl)
x = getattr(self, f'layer{2 * idx + 3}')(x, impl=impl)
x = self.output(x, impl=impl)
if self.use_embedding:
x = (x * embed).sum(dim=1, keepdim=True)
x = x / np.sqrt(self.embedding_dim)
elif self.label_dim > 0:
x = (x * label).sum(dim=1, keepdim=True)
results = {
'score': x,
'label': label
}
if self.use_embedding:
results['embedding'] = embed
return results
class PixelNormLayer(nn.Module):
"""Implements pixel-wise feature vector normalization layer."""
def __init__(self, dim, eps):
super().__init__()
self.dim = dim
self.eps = eps
def extra_repr(self):
return f'dim={self.dim}, epsilon={self.eps}'
def forward(self, x):
scale = (x.square().mean(dim=self.dim, keepdim=True) + self.eps).rsqrt()
return x * scale
class MiniBatchSTDLayer(nn.Module):
"""Implements the minibatch standard deviation layer."""
def __init__(self, groups, new_channels, eps):
super().__init__()
self.groups = groups
self.new_channels = new_channels
self.eps = eps
def extra_repr(self):
return (f'groups={self.groups}, '
f'new_channels={self.new_channels}, '
f'epsilon={self.eps}')
def forward(self, x):
if self.groups <= 1 or self.new_channels < 1:
return x
dtype = x.dtype
N, C, H, W = x.shape
G = min(self.groups, N) # Number of groups.
nC = self.new_channels # Number of channel groups.
c = C // nC # Channels per channel group.
y = x.reshape(G, -1, nC, c, H, W) # [GnFcHW]
y = y - y.mean(dim=0) # [GnFcHW]
y = y.square().mean(dim=0) # [nFcHW]
y = (y + self.eps).sqrt() # [nFcHW]
y = y.mean(dim=(2, 3, 4)) # [nF]
y = y.reshape(-1, nC, 1, 1) # [nF11]
y = y.repeat(G, 1, H, W) # [NFHW]
x = torch.cat((x, y), dim=1) # [N(C+F)HW]
assert x.dtype == dtype
return x
class ConvLayer(nn.Module):
"""Implements the convolutional layer.
If downsampling is needed (i.e., `scale_factor = 2`), the feature map will
be filtered with `filter_kernel` first.
"""
def __init__(self,
in_channels,
out_channels,
kernel_size,
add_bias,
scale_factor,
filter_kernel,
use_wscale,
wscale_gain,
lr_mul,
activation_type,
conv_clamp):
"""Initializes with layer settings.
Args:
in_channels: Number of channels of the input tensor.
out_channels: Number of channels of the output tensor.
kernel_size: Size of the convolutional kernels.
add_bias: Whether to add bias onto the convolutional result.
scale_factor: Scale factor for downsampling. `1` means skip
downsampling.
filter_kernel: Kernel used for filtering.
use_wscale: Whether to use weight scaling.
wscale_gain: Gain factor for weight scaling.
lr_mul: Learning multiplier for both weight and bias.
activation_type: Type of activation.
conv_clamp: A threshold to clamp the output of convolution layers to
avoid overflow under FP16 training.
"""
super().__init__()
self.in_channels = in_channels
self.out_channels = out_channels
self.kernel_size = kernel_size
self.add_bias = add_bias
self.scale_factor = scale_factor
self.filter_kernel = filter_kernel
self.use_wscale = use_wscale
self.wscale_gain = wscale_gain
self.lr_mul = lr_mul
self.activation_type = activation_type
self.conv_clamp = conv_clamp
weight_shape = (out_channels, in_channels, kernel_size, kernel_size)
fan_in = kernel_size * kernel_size * in_channels
wscale = wscale_gain / np.sqrt(fan_in)
if use_wscale:
self.weight = nn.Parameter(torch.randn(*weight_shape) / lr_mul)
self.wscale = wscale * lr_mul
else:
self.weight = nn.Parameter(
torch.randn(*weight_shape) * wscale / lr_mul)
self.wscale = lr_mul
if add_bias:
self.bias = nn.Parameter(torch.zeros(out_channels))
self.bscale = lr_mul
else:
self.bias = None
self.act_gain = bias_act.activation_funcs[activation_type].def_gain
if scale_factor > 1:
assert filter_kernel is not None
self.register_buffer(
'filter', upfirdn2d.setup_filter(filter_kernel))
fh, fw = self.filter.shape
self.filter_padding = (
kernel_size // 2 + (fw - scale_factor + 1) // 2,
kernel_size // 2 + (fw - scale_factor) // 2,
kernel_size // 2 + (fh - scale_factor + 1) // 2,
kernel_size // 2 + (fh - scale_factor) // 2)
def extra_repr(self):
return (f'in_ch={self.in_channels}, '
f'out_ch={self.out_channels}, '
f'ksize={self.kernel_size}, '
f'wscale_gain={self.wscale_gain:.3f}, '
f'bias={self.add_bias}, '
f'lr_mul={self.lr_mul:.3f}, '
f'downsample={self.scale_factor}, '
f'downsample_filter={self.filter_kernel}, '
f'act={self.activation_type}, '
f'clamp={self.conv_clamp}')
def forward(self, x, runtime_gain=1.0, impl='cuda'):
dtype = x.dtype
weight = self.weight
if self.wscale != 1.0:
weight = weight * self.wscale
bias = None
if self.bias is not None:
bias = self.bias.to(dtype)
if self.bscale != 1.0:
bias = bias * self.bscale
if self.scale_factor == 1: # Native convolution without downsampling.
padding = self.kernel_size // 2
x = conv2d_gradfix.conv2d(
x, weight.to(dtype), stride=1, padding=padding, impl=impl)
else: # Convolution with downsampling.
down = self.scale_factor
f = self.filter
padding = self.filter_padding
# When kernel size = 1, use filtering function for downsampling.
if self.kernel_size == 1:
x = upfirdn2d.upfirdn2d(
x, f, down=down, padding=padding, impl=impl)
x = conv2d_gradfix.conv2d(
x, weight.to(dtype), stride=1, padding=0, impl=impl)
# When kernel size != 1, use stride convolution for downsampling.
else:
x = upfirdn2d.upfirdn2d(
x, f, down=1, padding=padding, impl=impl)
x = conv2d_gradfix.conv2d(
x, weight.to(dtype), stride=down, padding=0, impl=impl)
act_gain = self.act_gain * runtime_gain
act_clamp = None
if self.conv_clamp is not None:
act_clamp = self.conv_clamp * runtime_gain
x = bias_act.bias_act(x, bias,
act=self.activation_type,
gain=act_gain,
clamp=act_clamp,
impl=impl)
assert x.dtype == dtype
return x
class DenseLayer(nn.Module):
"""Implements the dense layer."""
def __init__(self,
in_channels,
out_channels,
add_bias,
init_bias,
use_wscale,
wscale_gain,
lr_mul,
activation_type):
"""Initializes with layer settings.
Args:
in_channels: Number of channels of the input tensor.
out_channels: Number of channels of the output tensor.
add_bias: Whether to add bias onto the fully-connected result.
init_bias: The initial bias value before training.
use_wscale: Whether to use weight scaling.
wscale_gain: Gain factor for weight scaling.
lr_mul: Learning multiplier for both weight and bias.
activation_type: Type of activation.
"""
super().__init__()
self.in_channels = in_channels
self.out_channels = out_channels
self.add_bias = add_bias
self.init_bias = init_bias
self.use_wscale = use_wscale
self.wscale_gain = wscale_gain
self.lr_mul = lr_mul
self.activation_type = activation_type
weight_shape = (out_channels, in_channels)
wscale = wscale_gain / np.sqrt(in_channels)
if use_wscale:
self.weight = nn.Parameter(torch.randn(*weight_shape) / lr_mul)
self.wscale = wscale * lr_mul
else:
self.weight = nn.Parameter(
torch.randn(*weight_shape) * wscale / lr_mul)
self.wscale = lr_mul
if add_bias:
init_bias = np.float32(init_bias) / lr_mul
self.bias = nn.Parameter(torch.full([out_channels], init_bias))
self.bscale = lr_mul
else:
self.bias = None
def extra_repr(self):
return (f'in_ch={self.in_channels}, '
f'out_ch={self.out_channels}, '
f'wscale_gain={self.wscale_gain:.3f}, '
f'bias={self.add_bias}, '
f'init_bias={self.init_bias}, '
f'lr_mul={self.lr_mul:.3f}, '
f'act={self.activation_type}')
def forward(self, x, impl='cuda'):
dtype = x.dtype
if x.ndim != 2:
x = x.flatten(start_dim=1)
weight = self.weight.to(dtype) * self.wscale
bias = None
if self.bias is not None:
bias = self.bias.to(dtype)
if self.bscale != 1.0:
bias = bias * self.bscale
# Fast pass for linear activation.
if self.activation_type == 'linear' and bias is not None:
x = torch.addmm(bias.unsqueeze(0), x, weight.t())
else:
x = x.matmul(weight.t())
x = bias_act.bias_act(x, bias, act=self.activation_type, impl=impl)
assert x.dtype == dtype
return x
|