File size: 6,659 Bytes
eed19cd
2f85de4
 
 
 
 
 
 
 
 
 
eed19cd
795b69d
2f85de4
 
 
 
 
 
 
 
 
 
eed19cd
2f85de4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
65a0ed1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
print('start!', flush=True)
import gradio as gr
from models import build_model
from PIL import Image
import numpy as np
import torchvision
import ninja
import torch
from tqdm import trange
import imageio

print('load!', flush=True)
checkpoint = 'clevr.pth'
state = torch.load(checkpoint, map_location='cpu')
G = build_model(**state['model_kwargs_init']['generator_smooth'])
o0, o1 = G.load_state_dict(state['models']['generator_smooth'], strict=False)
G.eval().cuda()
G.backbone.synthesis.input.x_offset =0
G.backbone.synthesis.input.y_offset =0
G_kwargs= dict(noise_mode='const',
                fused_modulate=False,
                impl='cuda',
                fp16_res=None)
print('load finish', flush=True)

def trans(x, y, z, length):
    w = h = length
    x = 0.5 * w - 128 + 256 - (x/9 + .5) * 256
    y = 0.5 * h - 128 + (y/9 + .5) * 256
    z = z / 9 * 256
    return x, y, z
def get_bev_from_objs(objs, length=256, scale = 6):
    h, w = length, length *scale
    nc = 14
    canvas = np.zeros([h, w, nc])
    xx = np.ones([h,w]).cumsum(0)
    yy = np.ones([h,w]).cumsum(1)
    
    for x, y, z, shape, color, material, rot in objs:
        y, x, z = trans(x, y, z, length)
        
        feat = [0] * nc
        feat[0] = 1
        feat[COLOR_NAME_LIST.index(color) + 1] = 1
        feat[SHAPE_NAME_LIST.index(shape) + 1 + len(COLOR_NAME_LIST)] = 1
        feat[MATERIAL_NAME_LIST.index(material) + 1 + len(COLOR_NAME_LIST) + len(SHAPE_NAME_LIST)] = 1
        feat = np.array(feat)
        rot_sin = np.sin(rot / 180 * np.pi)
        rot_cos = np.cos(rot / 180 * np.pi)

        if shape == 'cube':
            mask = (np.abs(+rot_cos * (xx-x) + rot_sin * (yy-y)) <= z) * \
                   (np.abs(-rot_sin * (xx-x) + rot_cos * (yy-y)) <= z)
        else:
            mask = ((xx-x)**2 + (y-yy)**2) ** 0.5 <= z
        canvas[mask] = feat
    canvas = np.transpose(canvas, [2, 0, 1]).astype(np.float32)
    rotate_angle = 0
    canvas = torchvision.transforms.functional.rotate(torch.tensor(canvas), rotate_angle).numpy() 
    return canvas

# COLOR_NAME_LIST = ['cyan', 'green', 'purple', 'red', 'yellow', 'gray', 'brown', 'blue']
COLOR_NAME_LIST = ['cyan', 'green', 'purple', 'red', 'yellow', 'gray', 'purple', 'blue']
SHAPE_NAME_LIST = ['cube', 'sphere', 'cylinder']
MATERIAL_NAME_LIST = ['rubber', 'metal']

xy_lib = dict()
xy_lib['B'] = [
    [-2, -1],
    [-1, -1],
    [-2, 0],
    [-2, 1],
    [-1, .5],
    [0, 1],
    [0, 0],
    [0, -1],
    [0, 2],
    [-1, 2],
    [-2, 2]
]
xy_lib['B'] = [
    [-2.5, 1.25],
    [-2, 2],
    [-2, 0.5],
    [-2, -0.75],
    [-1, -1],
    [-1, 2],
    [-1, 0],
    [-1, 2],
    [0, 1],
    [0, 0],
    [0, -1],
    [0, 2],
    # [-1, 2],

]
xy_lib['B'] = [
    [-2.5, 1.25],
    [-2, 2],
    [-2, 0.5],
    [-2, -1],
    [-1, -1.25],
    [-1, 2],
    [-1, 0],
    [-1, 2],
    [0, 1],
    [0, 0],
    [0, -1.25],
    [0, 2],
    # [-1, 2],

]
xy_lib['R'] = [
    [0, -1],
    [0, 0],
    [0, 1],
    [0, 2],
    [-1, -1],
    # [-1, 2],
    [-2, -1],
    [-2, 0],
    [-2.25, 2],
    [-1, 1]
]
xy_lib['C'] = [
    [0, -1],
    [0, 0],
    [0, 1],
    [0, 2],
    [-1, -1],
    [-1, 2],
    [-2, -1],
    # [-2, .5],
    [-2, 2],
    # [-1, .5]
]
xy_lib['s'] = [
    [0, -1],
    [0, 0],
    [0, 2],
    [-1, -1],
    [-1, 2],
    [-2, -1],
    [-2, 1],
    [-2, 2],
    [-1, .5]
]

xy_lib['F'] = [
    [0, -1],
    [0, 0],
    [0, 1],
    [0, 2],
    [-1, -1],
    # [-1, 2],
    [-2, -1],
    [-2, .5],
    # [-2, 2],
    [-1, .5]
]

xy_lib['c'] = [
    [0.8,1], 
    # [-0.8,1], 
    [0,0.1],
    [0,1.9],
]

xy_lib['e'] = [
    [0, -1],
    [0, 0],
    [0, 1],
    [0, 2],
    [-1, -1],
    [-1, 2],
    [-2, -1],
    [-2, .5],
    [-2, 2],
    [-1, .5]
]
xy_lib['n'] = [ 
    [0,1], 
    [0,-1], 
    [0,0.1],
    [0,1.9],
    [-1,0], 
    [-2,1],
    [-3,-1],
    [-3,1], 
    [-3,0.1],
    [-3,1.9],
]
offset_x = dict(B=4, R=4, C=4, F=4, c=3, s=4, e=4, n=4.8)
s = 'BeRFsCene'
objs = []
offset = 2
for idx, c in enumerate(s):
    xy = xy_lib[c]
    
    
    color = np.random.choice(COLOR_NAME_LIST)
    for i in range(len(xy)):
        # while 1:
        #     is_ok = 1
        #     x, y = 

        #     for prev_x, prev_y in zip(xpool, ypool):
        x, y = xy[i]
        y *= 1.5
        y -= 0.5
        x -= offset
        z = 0.35
        # if idx<4:
        #     color = np.random.choice(COLOR_NAME_LIST[:-1])
        # else:
        #     color = 'blue'
        shape = 'cube'
        material = 'rubber'
        rot = 0
        objs.append([x, y, z,  shape, color, material, rot])
    offset += offset_x[c]
Image.fromarray((255 * .8 - get_bev_from_objs(objs)[0] *.8 * 255).astype(np.uint8))

batch_size = 1
code = torch.randn(1, G.z_dim).cuda()
to_pil = torchvision.transforms.ToPILImage()
large_bevs = torch.tensor(get_bev_from_objs(objs)).cuda()[None]
bevs = large_bevs[..., 0: 0+256]
RT = torch.tensor([[ -1.0000,   0.0000,   0.0000,   0.0000,   0.0000,   0.5000,  -0.8660,
          10.3923,   0.0000,  -0.8660,  -0.5000,   6.0000,   0.0000,   0.0000,
           0.0000,   1.0000, 262.5000,   0.0000,  32.0000,   0.0000, 262.5000,
          32.0000,   0.0000,   0.0000,   1.0000]], device='cuda')

print('prepare finish', flush=True)

def inference(name):
    print('inference', name, flush=True)
    gen = G(code, RT, bevs)
    rgb = gen['gen_output']['image'][0] * .5 + .5
    print('inference', name, flush=True)
    return np.array(to_pil(rgb))

    # to_pil(rgb).save('tmp.png')
    # save_path = '/mnt/petrelfs/zhangqihang/code/3d-scene-gen/tmp.png'
    # return [save_path]

with gr.Blocks() as demo:
    gr.HTML(
        """
        abc
        """)

    with gr.Group():
        with gr.Row():
            with gr.Column():
                with gr.Row():
                    with gr.Column():
                        with gr.Row():
                            num_frames = gr.Dropdown(["24 - frames", "32 - frames", "40 - frames", "48 - frames", "56 - frames", "80 - recommended to run on local GPUs", "240 - recommended to run on local GPUs", "600 - recommended to run on local GPUs", "1200 - recommended to run on local GPUs", "10000 - recommended to run on local GPUs"], label="Number of Video Frames", info="For >56 frames use local workstation!", value="24 - frames")

                with gr.Row():
                    with gr.Row():
                        btn = gr.Button("Result")
        
        gallery = gr.Image(label='img', show_label=True, elem_id="gallery")

        btn.click(fn=inference, inputs=num_frames, outputs=[gallery], postprocess=False)

demo.queue()
demo.launch(server_name='0.0.0.0', server_port=7860, debug=True, show_error=True)