File size: 56,548 Bytes
2f85de4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 |
# python3.7
"""Contains the implementation of generator described in StyleGAN3.
Compared to that of StyleGAN2, the generator in StyleGAN3 controls the frequency
flow along with the convolutional layers growing.
Paper: https://arxiv.org/pdf/2106.12423.pdf
Official implementation: https://github.com/NVlabs/stylegan3
"""
import numpy as np
import scipy.signal
import torch
import torch.nn as nn
import torch.nn.functional as F
from third_party.stylegan3_official_ops import bias_act
from third_party.stylegan3_official_ops import filtered_lrelu
from third_party.stylegan3_official_ops import conv2d_gradfix
from .utils.ops import all_gather
__all__ = ['StyleGAN3Generator']
# Resolutions allowed.
_RESOLUTIONS_ALLOWED = [8, 16, 32, 64, 128, 256, 512, 1024]
# pylint: disable=missing-function-docstring
class StyleGAN3Generator(nn.Module):
"""Defines the generator network in StyleGAN3.
NOTE: The synthesized images are with `RGB` channel order and pixel range
[-1, 1].
Settings for the mapping network:
(1) z_dim: Dimension of the input latent space, Z. (default: 512)
(2) w_dim: Dimension of the output latent space, W. (default: 512)
(3) repeat_w: Repeat w-code for different layers. (default: True)
(4) normalize_z: Whether to normalize the z-code. (default: True)
(5) mapping_layers: Number of layers of the mapping network. (default: 2)
(6) mapping_fmaps: Number of hidden channels of the mapping network.
(default: 512)
(7) mapping_lr_mul: Learning rate multiplier for the mapping network.
(default: 0.01)
Settings for conditional generation:
(1) label_dim: Dimension of the additional label for conditional generation.
In one-hot conditioning case, it is equal to the number of classes. If
set to 0, conditioning training will be disabled. (default: 0)
(2) embedding_dim: Dimension of the embedding space, if needed.
(default: 512)
(3) embedding_bias: Whether to add bias to embedding learning.
(default: True)
(4) embedding_lr_mul: Learning rate multiplier for the embedding learning.
(default: 1.0)
(5) normalize_embedding: Whether to normalize the embedding. (default: True)
(6) normalize_embedding_latent: Whether to normalize the embedding together
with the latent. (default: False)
Settings for the synthesis network:
(1) resolution: The resolution of the output image. (default: -1)
(2) image_channels: Number of channels of the output image. (default: 3)
(3) final_tanh: Whether to use `tanh` to control the final pixel range.
(default: False)
(4) output_scale: Factor to scaling the output image. (default: 0.25)
(5) num_layers: Number of synthesis layers, excluding the first positional
encoding layer and the last ToRGB layer. (default: 14)
(6) num_critical: Number of synthesis layers with critical sampling. These
layers are always set as top (with highest resolution) ones.
(7) fmaps_base: Factor to control number of feature maps for each layer.
(default: 32 << 10)
(8) fmaps_max: Maximum number of feature maps in each layer. (default: 512)
(9) kernel_size: Size of convolutional kernels. (default: 1)
(10) conv_clamp: A threshold to clamp the output of convolution layers to
avoid overflow under FP16 training. (default: None)
(11) first_cutoff: Cutoff frequency of the first layer. (default: 2)
(12) first_stopband: Stopband of the first layer. (default: 2 ** 2.1)
(13) last_stopband_rel: Stopband of the last layer, relative to the last
cutoff, which is `resolution / 2`. Concretely, `last_stopband` will be
equal to `resolution / 2 * last_stopband_rel`. (default: 2 ** 0.3)
(14) margin_size: Size of margin for each feature map. (default: 10)
(15) filter_size: Size of filter for upsampling and downsampling around the
activation. (default: 6)
(16) act_upsampling: Factor used to upsample the feature map before
activation for anti-aliasing. (default: 2)
(17) use_radial_filter: Whether to use radial filter for downsampling after
the activation. (default: False)
(18) eps: A small value to avoid divide overflow. (default: 1e-8)
Runtime settings:
(1) w_moving_decay: Decay factor for updating `w_avg`, which is used for
training only. Set `None` to disable. (default: 0.998)
(2) sync_w_avg: Synchronizing the stats of `w_avg` across replicas. If set
as `True`, the stats will be more accurate, yet the speed maybe a little
bit slower. (default: False)
(3) style_mixing_prob: Probability to perform style mixing as a training
regularization. Set `None` to disable. (default: None)
(4) trunc_psi: Truncation psi, set `None` to disable. (default: None)
(5) trunc_layers: Number of layers to perform truncation. (default: None)
(6) magnitude_moving_decay: Decay factor for updating `magnitude_ema` in
each `SynthesisLayer`, which is used for training only. Set `None` to
disable. (default: 0.999)
(7) update_ema: Whether to update `w_avg` in the `MappingNetwork` and
`magnitude_ema` in each `SynthesisLayer`. This field only takes effect
in `training` model. (default: False)
(8) fp16_res: Layers at resolution higher than (or equal to) this field will
use `float16` precision for computation. This is merely used for
acceleration. If set as `None`, all layers will use `float32` by
default. (default: None)
(9) impl: Implementation mode of some particular ops, e.g., `filtering`,
`bias_act`, etc. `cuda` means using the official CUDA implementation
from StyleGAN3, while `ref` means using the native PyTorch ops.
(default: `cuda`)
"""
def __init__(self,
# Settings for mapping network.
z_dim=512,
w_dim=512,
repeat_w=True,
normalize_z=True,
mapping_layers=2,
mapping_fmaps=512,
mapping_lr_mul=0.01,
# Settings for conditional generation.
label_dim=0,
embedding_dim=512,
embedding_bias=True,
embedding_lr_mul=1.0,
normalize_embedding=True,
normalize_embedding_latent=False,
# Settings for synthesis network.
resolution=-1,
image_channels=3,
final_tanh=False,
output_scale=0.25,
num_layers=14,
num_critical=2,
fmaps_base=32 << 10,
fmaps_max=512,
kernel_size=1,
conv_clamp=256,
first_cutoff=2,
first_stopband=2 ** 2.1,
last_stopband_rel=2 ** 0.3,
margin_size=10,
filter_size=6,
act_upsampling=2,
use_radial_filter=False,
eps=1e-8):
"""Initializes with basic settings."""
super().__init__()
if resolution not in _RESOLUTIONS_ALLOWED:
raise ValueError(f'Invalid resolution: `{resolution}`!\n'
f'Resolutions allowed: {_RESOLUTIONS_ALLOWED}.')
self.z_dim = z_dim
self.w_dim = w_dim
self.repeat_w = repeat_w
self.normalize_z = normalize_z
self.mapping_layers = mapping_layers
self.mapping_fmaps = mapping_fmaps
self.mapping_lr_mul = mapping_lr_mul
self.label_dim = label_dim
self.embedding_dim = embedding_dim
self.embedding_bias = embedding_bias
self.embedding_lr_mul = embedding_lr_mul
self.normalize_embedding = normalize_embedding
self.normalize_embedding_latent = normalize_embedding_latent
self.resolution = resolution
self.image_channels = image_channels
self.final_tanh = final_tanh
self.output_scale = output_scale
self.num_layers = num_layers + 2 # Including InputLayer and ToRGBLayer.
self.num_critical = num_critical
self.fmaps_base = fmaps_base
self.fmaps_max = fmaps_max
self.kernel_size = kernel_size
self.conv_clamp = conv_clamp
self.first_cutoff = first_cutoff
self.first_stopband = first_stopband
self.last_stopband_rel = last_stopband_rel
self.margin_size = margin_size
self.filter_size = filter_size
self.act_upsampling = act_upsampling
self.use_radial_filter = use_radial_filter
self.eps = eps
# Dimension of latent space, which is convenient for sampling.
self.latent_dim = (z_dim,)
self.mapping = MappingNetwork(
input_dim=z_dim,
output_dim=w_dim,
num_outputs=self.num_layers,
repeat_output=repeat_w,
normalize_input=normalize_z,
num_layers=mapping_layers,
hidden_dim=mapping_fmaps,
lr_mul=mapping_lr_mul,
label_dim=label_dim,
embedding_dim=embedding_dim,
embedding_bias=embedding_bias,
embedding_lr_mul=embedding_lr_mul,
normalize_embedding=normalize_embedding,
normalize_embedding_latent=normalize_embedding_latent,
eps=eps)
# This is used for truncation trick.
if self.repeat_w:
self.register_buffer('w_avg', torch.zeros(w_dim))
else:
self.register_buffer('w_avg', torch.zeros(self.num_layers * w_dim))
self.synthesis = SynthesisNetwork(resolution=resolution,
w_dim=w_dim,
image_channels=image_channels,
final_tanh=final_tanh,
output_scale=output_scale,
num_layers=num_layers,
num_critical=num_critical,
fmaps_base=fmaps_base,
fmaps_max=fmaps_max,
kernel_size=kernel_size,
conv_clamp=conv_clamp,
first_cutoff=first_cutoff,
first_stopband=first_stopband,
last_stopband_rel=last_stopband_rel,
margin_size=margin_size,
filter_size=filter_size,
act_upsampling=act_upsampling,
use_radial_filter=use_radial_filter,
eps=eps)
self.var_mapping = {'w_avg': 'mapping.w_avg'}
for key, val in self.mapping.var_mapping.items():
self.var_mapping[f'mapping.{key}'] = f'mapping.{val}'
for key, val in self.synthesis.var_mapping.items():
self.var_mapping[f'synthesis.{key}'] = f'synthesis.{val}'
def set_space_of_latent(self, space_of_latent):
"""Sets the space to which the latent code belong.
See `SynthesisNetwork` for more details.
"""
self.synthesis.set_space_of_latent(space_of_latent)
def forward(self,
z,
label=None,
w_moving_decay=0.998,
sync_w_avg=False,
style_mixing_prob=None,
trunc_psi=None,
trunc_layers=None,
magnitude_moving_decay=0.999,
update_ema=False,
fp16_res=None,
impl='cuda'):
"""Connects mapping network and synthesis network.
This forward function will also update the average `w_code`, perform
style mixing as a training regularizer, and do truncation trick, which
is specially designed for inference.
Concretely, the truncation trick acts as follows:
For layers in range [0, truncation_layers), the truncated w-code is
computed as
w_new = w_avg + (w - w_avg) * trunc_psi
To disable truncation, please set
(1) trunc_psi = 1.0 (None) OR
(2) trunc_layers = 0 (None)
"""
mapping_results = self.mapping(z, label, impl=impl)
w = mapping_results['w']
if self.training and update_ema and w_moving_decay is not None:
if sync_w_avg:
batch_w_avg = all_gather(w.detach()).mean(dim=0)
else:
batch_w_avg = w.detach().mean(dim=0)
self.w_avg.copy_(batch_w_avg.lerp(self.w_avg, w_moving_decay))
wp = mapping_results.pop('wp')
if self.training and style_mixing_prob is not None:
if np.random.uniform() < style_mixing_prob:
new_z = torch.randn_like(z)
new_wp = self.mapping(new_z, label, impl=impl)['wp']
mixing_cutoff = np.random.randint(1, self.num_layers)
wp[:, mixing_cutoff:] = new_wp[:, mixing_cutoff:]
if not self.training:
trunc_psi = 1.0 if trunc_psi is None else trunc_psi
trunc_layers = 0 if trunc_layers is None else trunc_layers
if trunc_psi < 1.0 and trunc_layers > 0:
w_avg = self.w_avg.reshape(1, -1, self.w_dim)[:, :trunc_layers]
wp[:, :trunc_layers] = w_avg.lerp(
wp[:, :trunc_layers], trunc_psi)
synthesis_results = self.synthesis(
wp,
magnitude_moving_decay=magnitude_moving_decay,
update_ema=update_ema,
fp16_res=fp16_res,
impl=impl)
return {**mapping_results, **synthesis_results}
class MappingNetwork(nn.Module):
"""Implements the latent space mapping network.
Basically, this network executes several dense layers in sequence, and the
label embedding if needed.
"""
def __init__(self,
input_dim,
output_dim,
num_outputs,
repeat_output,
normalize_input,
num_layers,
hidden_dim,
lr_mul,
label_dim,
embedding_dim,
embedding_bias,
embedding_lr_mul,
normalize_embedding,
normalize_embedding_latent,
eps):
super().__init__()
self.input_dim = input_dim
self.output_dim = output_dim
self.num_outputs = num_outputs
self.repeat_output = repeat_output
self.normalize_input = normalize_input
self.num_layers = num_layers
self.hidden_dim = hidden_dim
self.lr_mul = lr_mul
self.label_dim = label_dim
self.embedding_dim = embedding_dim
self.embedding_bias = embedding_bias
self.embedding_lr_mul = embedding_lr_mul
self.normalize_embedding = normalize_embedding
self.normalize_embedding_latent = normalize_embedding_latent
self.eps = eps
self.var_mapping = {}
self.norm = PixelNormLayer(dim=1, eps=eps)
if self.label_dim > 0:
input_dim = input_dim + embedding_dim
self.embedding = DenseLayer(in_channels=label_dim,
out_channels=embedding_dim,
init_weight_std=1.0,
add_bias=embedding_bias,
init_bias=0.0,
lr_mul=embedding_lr_mul,
activation_type='linear')
self.var_mapping['embedding.weight'] = 'embed.weight'
if self.embedding_bias:
self.var_mapping['embedding.bias'] = 'embed.bias'
if num_outputs is not None and not repeat_output:
output_dim = output_dim * num_outputs
for i in range(num_layers):
in_channels = (input_dim if i == 0 else hidden_dim)
out_channels = (output_dim if i == (num_layers - 1) else hidden_dim)
self.add_module(f'dense{i}',
DenseLayer(in_channels=in_channels,
out_channels=out_channels,
init_weight_std=1.0,
add_bias=True,
init_bias=0.0,
lr_mul=lr_mul,
activation_type='lrelu'))
self.var_mapping[f'dense{i}.weight'] = f'fc{i}.weight'
self.var_mapping[f'dense{i}.bias'] = f'fc{i}.bias'
def forward(self, z, label=None, impl='cuda'):
if z.ndim != 2 or z.shape[1] != self.input_dim:
raise ValueError(f'Input latent code should be with shape '
f'[batch_size, input_dim], where '
f'`input_dim` equals to {self.input_dim}!\n'
f'But `{z.shape}` is received!')
if self.normalize_input:
z = self.norm(z)
if self.label_dim > 0:
if label is None:
raise ValueError(f'Model requires an additional label '
f'(with dimension {self.label_dim}) as input, '
f'but no label is received!')
if label.ndim != 2 or label.shape != (z.shape[0], self.label_dim):
raise ValueError(f'Input label should be with shape '
f'[batch_size, label_dim], where '
f'`batch_size` equals to that of '
f'latent codes ({z.shape[0]}) and '
f'`label_dim` equals to {self.label_dim}!\n'
f'But `{label.shape}` is received!')
label = label.to(dtype=torch.float32)
embedding = self.embedding(label, impl=impl)
if self.normalize_embedding:
embedding = self.norm(embedding)
w = torch.cat((z, embedding), dim=1)
else:
w = z
if self.label_dim > 0 and self.normalize_embedding_latent:
w = self.norm(w)
for i in range(self.num_layers):
w = getattr(self, f'dense{i}')(w, impl=impl)
wp = None
if self.num_outputs is not None:
if self.repeat_output:
wp = w.unsqueeze(1).repeat((1, self.num_outputs, 1))
else:
wp = w.reshape(-1, self.num_outputs, self.output_dim)
results = {
'z': z,
'label': label,
'w': w,
'wp': wp,
}
if self.label_dim > 0:
results['embedding'] = embedding
return results
class SynthesisNetwork(nn.Module):
"""Implements the image synthesis network.
Basically, this network executes several convolutional layers in sequence.
"""
def __init__(self,
resolution,
w_dim,
image_channels,
final_tanh,
output_scale,
num_layers,
num_critical,
fmaps_base,
fmaps_max,
kernel_size,
conv_clamp,
first_cutoff,
first_stopband,
last_stopband_rel,
margin_size,
filter_size,
act_upsampling,
use_radial_filter,
eps):
super().__init__()
self.resolution = resolution
self.w_dim = w_dim
self.image_channels = image_channels
self.final_tanh = final_tanh
self.output_scale = output_scale
self.num_layers = num_layers
self.num_critical = num_critical
self.fmaps_base = fmaps_base
self.fmaps_max = fmaps_max
self.kernel_size = kernel_size
self.conv_clamp = conv_clamp
self.first_cutoff = first_cutoff
self.first_stopband = first_stopband
self.last_stopband_rel = last_stopband_rel
self.margin_size = margin_size
self.filter_size = filter_size
self.act_upsampling = act_upsampling
self.use_radial_filter = use_radial_filter
self.eps = eps
self.var_mapping = {}
# Get layer settings.
last_cutoff = resolution / 2
last_stopband = last_cutoff * last_stopband_rel
layer_indices = np.arange(num_layers + 1)
exponents = np.minimum(layer_indices / (num_layers - num_critical), 1)
cutoffs = first_cutoff * (last_cutoff / first_cutoff) ** exponents
stopbands = (
first_stopband * (last_stopband / first_stopband) ** exponents)
sampling_rates = np.exp2(np.ceil(np.log2(
np.minimum(stopbands * 2, self.resolution))))
sampling_rates = np.int64(sampling_rates)
half_widths = np.maximum(stopbands, sampling_rates / 2) - cutoffs
sizes = sampling_rates + margin_size * 2
sizes[-2:] = resolution
sizes = np.int64(sizes)
channels = np.rint(np.minimum((fmaps_base / 2) / cutoffs, fmaps_max))
channels[-1] = image_channels
channels = np.int64(channels)
self.cutoffs = cutoffs
self.stopbands = stopbands
self.sampling_rates = sampling_rates
self.half_widths = half_widths
self.sizes = sizes
self.channels = channels
# Input layer, with positional encoding.
self.early_layer = InputLayer(w_dim=w_dim,
channels=channels[0],
size=sizes[0],
sampling_rate=sampling_rates[0],
cutoff=cutoffs[0])
self.var_mapping['early_layer.weight'] = 'input.weight'
self.var_mapping['early_layer.affine.weight'] = 'input.affine.weight'
self.var_mapping['early_layer.affine.bias'] = 'input.affine.bias'
self.var_mapping['early_layer.transform'] = 'input.transform'
self.var_mapping['early_layer.frequency'] = 'input.freqs'
self.var_mapping['early_layer.phase'] = 'input.phases'
# Convolutional layers.
for idx in range(num_layers + 1):
# Position related settings.
if idx < num_layers:
kernel_size = self.kernel_size
demodulate = True
act_upsampling = self.act_upsampling
else: # ToRGB layer.
kernel_size = 1
demodulate = False
act_upsampling = 1
if idx < num_layers - num_critical: # Non-critical sampling.
use_radial_filter = self.use_radial_filter
else: # Critical sampling.
use_radial_filter = False
prev_idx = max(idx - 1, 0)
layer_name = f'layer{idx}'
official_layer_name = f'L{idx}_{sizes[idx]}_{channels[idx]}'
self.add_module(
layer_name,
SynthesisLayer(in_channels=channels[prev_idx],
out_channels=channels[idx],
w_dim=w_dim,
kernel_size=kernel_size,
demodulate=demodulate,
eps=eps,
conv_clamp=conv_clamp,
in_size=sizes[prev_idx],
out_size=sizes[idx],
in_sampling_rate=sampling_rates[prev_idx],
out_sampling_rate=sampling_rates[idx],
in_cutoff=cutoffs[prev_idx],
out_cutoff=cutoffs[idx],
in_half_width=half_widths[prev_idx],
out_half_width=half_widths[idx],
filter_size=filter_size,
use_radial_filter=use_radial_filter,
act_upsampling=act_upsampling))
self.var_mapping[f'{layer_name}.magnitude_ema'] = (
f'{official_layer_name}.magnitude_ema')
self.var_mapping[f'{layer_name}.conv.weight'] = (
f'{official_layer_name}.weight')
self.var_mapping[f'{layer_name}.conv.style.weight'] = (
f'{official_layer_name}.affine.weight')
self.var_mapping[f'{layer_name}.conv.style.bias'] = (
f'{official_layer_name}.affine.bias')
self.var_mapping[f'{layer_name}.filter.bias'] = (
f'{official_layer_name}.bias')
if idx < num_layers: # ToRGB layer does not need filters.
self.var_mapping[f'{layer_name}.filter.up_filter'] = (
f'{official_layer_name}.up_filter')
self.var_mapping[f'{layer_name}.filter.down_filter'] = (
f'{official_layer_name}.down_filter')
def set_space_of_latent(self, space_of_latent):
"""Sets the space to which the latent code belong.
This function is particularly used for choosing how to inject the latent
code into the convolutional layers. The original generator will take a
W-Space code and apply it for style modulation after an affine
transformation. But, sometimes, it may need to directly feed an already
affine-transformed code into the convolutional layer, e.g., when
training an encoder for GAN inversion. We term the transformed space as
Style Space (or Y-Space). This function is designed to tell the
convolutional layers how to use the input code.
Args:
space_of_latent: The space to which the latent code belong. Case
insensitive. Support `W` and `Y`.
"""
space_of_latent = space_of_latent.upper()
for module in self.modules():
if isinstance(module, ModulateConvLayer):
setattr(module, 'space_of_latent', space_of_latent)
def forward(self,
wp,
magnitude_moving_decay=0.999,
update_ema=False,
fp16_res=None,
impl='cuda'):
results = {'wp': wp}
x = self.early_layer(wp[:, 0])
for idx, sampling_rate in enumerate(self.sampling_rates):
if fp16_res is not None and sampling_rate >= fp16_res:
x = x.to(torch.float16)
layer = getattr(self, f'layer{idx}')
x, style = layer(x, wp[:, idx + 1],
magnitude_moving_decay=magnitude_moving_decay,
update_ema=update_ema,
impl=impl)
results[f'style{idx}'] = style
if self.output_scale != 1:
x = x * self.output_scale
x = x.to(torch.float32)
if self.final_tanh:
x = torch.tanh(x)
results['image'] = x
return results
class PixelNormLayer(nn.Module):
"""Implements pixel-wise feature vector normalization layer."""
def __init__(self, dim, eps):
super().__init__()
self.dim = dim
self.eps = eps
def extra_repr(self):
return f'dim={self.dim}, epsilon={self.eps}'
def forward(self, x):
scale = (x.square().mean(dim=self.dim, keepdim=True) + self.eps).rsqrt()
return x * scale
class InputLayer(nn.Module):
"""Implements the input layer with positional encoding.
Basically, this block outputs a feature map with shape
`(channels, size, size)` based on the coordinate information.
`sampling_rate` and `cutoff` are used to control the coordinate range and
strength respectively.
For a low-pass filter, `cutoff` is the same as the `bandwidth`.
The initial frequency of the starting feature map is controlled by the
positional encoding `sin(2 * pi * x)`, where
`x = trans(coord) * frequency + phase`. We would like to introduce rich
information (i.e. frequencies), but keep all frequencies lower than
stopband, which is `sampling_rate / 2`.
Besides, this layer also supports learning a transformation from the latent
code w, and providing a customized transformation for inference. Please
use the buffer `transform`.
NOTE: `size` is different from `sampling_rate`. `sampling_rate` is the
actual size of the current stage, which determines the maximum frequency
that the feature maps can hold. `size` is the actual height and width of the
current feature map, including the extended border.
"""
def __init__(self, w_dim, channels, size, sampling_rate, cutoff):
super().__init__()
self.w_dim = w_dim
self.channels = channels
self.size = size
self.sampling_rate = sampling_rate
self.cutoff = cutoff
# Coordinate of the entire feature map, with resolution (size, size).
# The coordinate range for the central (sampling_rate, sampling_rate)
# region is set as (-0.0, 0.5), which extends to the remaining region.
theta = torch.eye(2, 3)
theta[0, 0] = 0.5 / sampling_rate * size
theta[1, 1] = 0.5 / sampling_rate * size
grid = F.affine_grid(theta=theta.unsqueeze(0),
size=(1, 1, size, size),
align_corners=False)
self.register_buffer('grid', grid)
# Draw random frequency from a uniform 2D disc for each channel
# regarding X and Y dimension. And also draw a random phase for each
# channel. Accordingly, each channel has three pre-defined parameters,
# which are X-frequency, Y-frequency, and phase.
frequency = torch.randn(channels, 2)
radius = frequency.square().sum(dim=1, keepdim=True).sqrt()
frequency = frequency / (radius * radius.square().exp().pow(0.25))
frequency = frequency * cutoff
self.register_buffer('frequency', frequency)
phase = torch.rand(channels) - 0.5
self.register_buffer('phase', phase)
# This layer is used to map the latent code w to transform factors,
# with order: cos(angle), sin(angle), transpose_x, transpose_y.
self.affine = DenseLayer(in_channels=w_dim,
out_channels=4,
init_weight_std=0.0,
add_bias=True,
init_bias=(1, 0, 0, 0),
lr_mul=1.0,
activation_type='linear')
# It is possible to use this buffer to customize the transform of the
# output synthesis.
self.register_buffer('transform', torch.eye(3))
# Use 1x1 conv to convert positional encoding to features.
self.weight = nn.Parameter(torch.randn(channels, channels))
self.weight_scale = 1 / np.sqrt(channels)
def extra_repr(self):
return (f'channels={self.channels}, '
f'size={self.size}, '
f'sampling_rate={self.sampling_rate}, '
f'cutoff={self.cutoff:.3f}, ')
def forward(self, w):
batch = w.shape[0]
# Get transformation matrix.
# Factor controlled by latent code.
transformation_factor = self.affine(w)
# Ensure the range of cosine and sine value (first two dimension).
_norm = transformation_factor[:, :2].norm(dim=1, keepdim=True)
transformation_factor = transformation_factor / _norm
# Rotation.
rotation = torch.eye(3, device=w.device).unsqueeze(0)
rotation = rotation.repeat((batch, 1, 1))
rotation[:, 0, 0] = transformation_factor[:, 0]
rotation[:, 0, 1] = -transformation_factor[:, 1]
rotation[:, 1, 0] = transformation_factor[:, 1]
rotation[:, 1, 1] = transformation_factor[:, 0]
# Translation.
translation = torch.eye(3, device=w.device).unsqueeze(0)
translation = translation.repeat((batch, 1, 1))
translation[:, 0, 2] = -transformation_factor[:, 2]
translation[:, 1, 2] = -transformation_factor[:, 3]
# Customized transformation.
transform = rotation @ translation @ self.transform.unsqueeze(0)
# Transform frequency and shift, which is equivalent to transforming
# the coordinate. For example, given a coordinate, X, we would like to
# first transform it with the rotation matrix, R, and the translation
# matrix, T, as X' = RX + T. Then, we will apply frequency, f, and
# phase, p, with sin(2 * pi * (fX' + p)). Natively, we have
# fX' + p = f(RX + T) + p = (fR)X + (fT + p)
frequency = self.frequency.unsqueeze(0) @ transform[:, :2, :2] # [NC2]
phase = self.frequency.unsqueeze(0) @ transform[:, :2, 2:] # [NC]
phase = phase.squeeze(2) + self.phase.unsqueeze(0) # [NC]
# Positional encoding.
x = self.grid # [NHW2]
x = x.unsqueeze(3) # [NHW12]
x = x @ frequency.transpose(1, 2).unsqueeze(1).unsqueeze(2) # [NHW1C]
x = x.squeeze(3) # [NHWC]
x = x + phase.unsqueeze(1).unsqueeze(2) # [NHWC]
x = torch.sin(2 * np.pi * x) # [NHWC]
# Dampen out-of-band frequency that may be introduced by the customized
# transform `self.transform`.
frequency_norm = frequency.norm(dim=2)
stopband = self.sampling_rate / 2
factor = (frequency_norm - self.cutoff) / (stopband - self.cutoff)
amplitude = (1 - factor).clamp(0, 1) # [NC]
x = x * amplitude.unsqueeze(1).unsqueeze(2) # [NHWC]
# Project positional encoding to features.
weight = self.weight * self.weight_scale
x = x @ weight.t()
return x.permute(0, 3, 1, 2).contiguous()
class SynthesisLayer(nn.Module):
"""Implements the synthesis layer.
Each synthesis layer (including ToRGB layer) consists of a
`ModulateConvLayer` and a `FilteringActLayer`. Besides, this layer will
trace the magnitude (norm) of the input feature map, and update the
statistic with `magnitude_moving_decay`.
"""
def __init__(self,
# Settings for modulated convolution.
in_channels,
out_channels,
w_dim,
kernel_size,
demodulate,
eps,
conv_clamp,
# Settings for filtering activation.
in_size,
out_size,
in_sampling_rate,
out_sampling_rate,
in_cutoff,
out_cutoff,
in_half_width,
out_half_width,
filter_size,
use_radial_filter,
act_upsampling):
"""Initializes with layer settings.
Args:
in_channels: Number of channels of the input tensor.
out_channels: Number of channels of the output tensor.
w_dim: Dimension of W space for style modulation.
kernel_size: Size of the convolutional kernels.
demodulate: Whether to perform style demodulation.
eps: A small value to avoid divide overflow.
conv_clamp: A threshold to clamp the output of convolution layers to
avoid overflow under FP16 training.
in_size: Size of the input feature map, i.e., height and width.
out_size: Size of the output feature map, i.e., height and width.
in_sampling_rate: Sampling rate of the input feature map. Different
from `in_size` that includes extended border, this field
controls the actual maximum frequency that can be represented
by the feature map.
out_sampling_rate: Sampling rate of the output feature map.
in_cutoff: Cutoff frequency of the input feature map.
out_cutoff: Cutoff frequency of the output feature map.
in_half_width: Half-width of the transition band of the input
feature map.
out_half_width: Half-width of the transition band of the output
feature map.
filter_size: Size of the filter used in this layer.
use_radial_filter: Whether to use radial filter.
act_upsampling: Upsampling factor used before the activation.
`1` means do not wrap upsampling and downsampling around the
activation.
"""
super().__init__()
self.in_channels = in_channels
self.out_channels = out_channels
self.w_dim = w_dim
self.kernel_size = kernel_size
self.demodulate = demodulate
self.eps = eps
self.conv_clamp = conv_clamp
self.in_size = in_size
self.out_size = out_size
self.in_sampling_rate = in_sampling_rate
self.out_sampling_rate = out_sampling_rate
self.in_cutoff = in_cutoff
self.out_cutoff = out_cutoff
self.in_half_width = in_half_width
self.out_half_width = out_half_width
self.filter_size = filter_size
self.use_radial_filter = use_radial_filter
self.act_upsampling = act_upsampling
self.conv = ModulateConvLayer(in_channels=in_channels,
out_channels=out_channels,
w_dim=w_dim,
kernel_size=kernel_size,
demodulate=demodulate,
eps=eps)
self.register_buffer('magnitude_ema', torch.ones(()))
self.filter = FilteringActLayer(out_channels=out_channels,
in_size=in_size,
out_size=out_size,
in_sampling_rate=in_sampling_rate,
out_sampling_rate=out_sampling_rate,
in_cutoff=in_cutoff,
out_cutoff=out_cutoff,
in_half_width=in_half_width,
out_half_width=out_half_width,
filter_size=filter_size,
use_radial_filter=use_radial_filter,
conv_padding=self.conv.padding,
act_upsampling=act_upsampling)
def extra_repr(self):
return f'conv_clamp={self.conv_clamp}'
def forward(self,
x,
w,
magnitude_moving_decay=0.999,
update_ema=False,
impl='cuda'):
if self.training and update_ema and magnitude_moving_decay is not None:
magnitude = x.detach().to(torch.float32).square().mean()
self.magnitude_ema.copy_(
magnitude.lerp(self.magnitude_ema, magnitude_moving_decay))
input_gain = self.magnitude_ema.rsqrt()
x, style = self.conv(x, w, gain=input_gain, impl=impl)
if self.act_upsampling > 1:
x = self.filter(x, np.sqrt(2), 0.2, self.conv_clamp, impl=impl)
else:
x = self.filter(x, 1, 1, self.conv_clamp, impl=impl)
return x, style
class ModulateConvLayer(nn.Module):
"""Implements the convolutional layer with style modulation.
Different from the one introduced in StyleGAN2, this layer has following
changes:
(1) fusing `conv` and `style modulation` into one op by default
(2) NOT adding a noise onto the output feature map.
(3) NOT activating the feature map, which is moved to `FilteringActLayer`.
"""
def __init__(self,
in_channels,
out_channels,
w_dim,
kernel_size,
demodulate,
eps):
"""Initializes with layer settings.
Args:
in_channels: Number of channels of the input tensor.
out_channels: Number of channels of the output tensor.
w_dim: Dimension of W space for style modulation.
kernel_size: Size of the convolutional kernels.
demodulate: Whether to perform style demodulation.
eps: A small value to avoid divide overflow.
"""
super().__init__()
self.in_channels = in_channels
self.out_channels = out_channels
self.w_dim = w_dim
self.kernel_size = kernel_size
self.demodulate = demodulate
self.eps = eps
self.space_of_latent = 'W'
# Set up weight.
weight_shape = (out_channels, in_channels, kernel_size, kernel_size)
self.weight = nn.Parameter(torch.randn(*weight_shape))
self.wscale = 1.0 / np.sqrt(kernel_size * kernel_size * in_channels)
self.padding = kernel_size - 1
# Set up style.
self.style = DenseLayer(in_channels=w_dim,
out_channels=in_channels,
init_weight_std=1.0,
add_bias=True,
init_bias=1.0,
lr_mul=1.0,
activation_type='linear')
def extra_repr(self):
return (f'in_ch={self.in_channels}, '
f'out_ch={self.out_channels}, '
f'ksize={self.kernel_size}, '
f'demodulate={self.demodulate}')
def forward_style(self, w, impl='cuda'):
"""Gets style code from the given input.
More specifically, if the input is from W-Space, it will be projected by
an affine transformation. If it is from the Style Space (Y-Space), no
operation is required.
NOTE: For codes from Y-Space, we use slicing to make sure the dimension
is correct, in case that the code is padded before fed into this layer.
"""
space_of_latent = self.space_of_latent.upper()
if space_of_latent == 'W':
if w.ndim != 2 or w.shape[1] != self.w_dim:
raise ValueError(f'The input tensor should be with shape '
f'[batch_size, w_dim], where '
f'`w_dim` equals to {self.w_dim}!\n'
f'But `{w.shape}` is received!')
style = self.style(w, impl=impl)
elif space_of_latent == 'Y':
if w.ndim != 2 or w.shape[1] < self.in_channels:
raise ValueError(f'The input tensor should be with shape '
f'[batch_size, y_dim], where '
f'`y_dim` equals to {self.in_channels}!\n'
f'But `{w.shape}` is received!')
style = w[:, :self.in_channels]
else:
raise NotImplementedError(f'Not implemented `space_of_latent`: '
f'`{space_of_latent}`!')
return style
def forward(self, x, w, gain=None, impl='cuda'):
dtype = x.dtype
N, C, H, W = x.shape
# Affine on `w`.
style = self.forward_style(w, impl=impl)
if not self.demodulate:
_style = style * self.wscale # Equivalent to scaling weight.
else:
_style = style
weight = self.weight
out_ch, in_ch, kh, kw = weight.shape
assert in_ch == C
# Pre-normalize inputs.
if self.demodulate:
weight = (weight *
weight.square().mean(dim=(1, 2, 3), keepdim=True).rsqrt())
_style = _style * _style.square().mean().rsqrt()
weight = weight.unsqueeze(0)
weight = weight * _style.reshape(N, 1, in_ch, 1, 1) # modulation
if self.demodulate:
decoef = (weight.square().sum(dim=(2, 3, 4)) + self.eps).rsqrt()
weight = weight * decoef.reshape(N, out_ch, 1, 1, 1) # demodulation
if gain is not None:
gain = gain.expand(N, in_ch)
weight = weight * gain.reshape(N, 1, in_ch, 1, 1)
# Fuse `conv` and `style modulation` as one op, using group convolution.
x = x.reshape(1, N * in_ch, H, W)
w = weight.reshape(N * out_ch, in_ch, kh, kw).to(dtype)
x = conv2d_gradfix.conv2d(
x, w, padding=self.padding, groups=N, impl=impl)
x = x.reshape(N, out_ch, x.shape[2], x.shape[3])
assert x.dtype == dtype
assert style.dtype == torch.float32
return x, style
class FilteringActLayer(nn.Module):
"""Implements the activation, wrapped with upsampling and downsampling.
Basically, this layer executes the following operations in order:
(1) Apply bias.
(2) Upsample the feature map to increase sampling rate.
(3) Apply non-linearity as activation.
(4) Downsample the feature map to target size.
This layer is mostly borrowed from the official implementation:
https://github.com/NVlabs/stylegan3/blob/main/training/networks_stylegan3.py
"""
def __init__(self,
out_channels,
in_size,
out_size,
in_sampling_rate,
out_sampling_rate,
in_cutoff,
out_cutoff,
in_half_width,
out_half_width,
filter_size,
use_radial_filter,
conv_padding,
act_upsampling):
"""Initializes with layer settings.
Args:
out_channels: Number of output channels, which is used for `bias`.
in_size: Size of the input feature map, i.e., height and width.
out_size: Size of the output feature map, i.e., height and width.
in_sampling_rate: Sampling rate of the input feature map. Different
from `in_size` that includes extended border, this field
controls the actual maximum frequency that can be represented
by the feature map.
out_sampling_rate: Sampling rate of the output feature map.
in_cutoff: Cutoff frequency of the input feature map.
out_cutoff: Cutoff frequency of the output feature map.
in_half_width: Half-width of the transition band of the input
feature map.
out_half_width: Half-width of the transition band of the output
feature map.
filter_size: Size of the filter used in this layer.
use_radial_filter: Whether to use radial filter.
conv_padding: The padding used in the previous convolutional layer.
act_upsampling: Upsampling factor used before the activation.
`1` means do not wrap upsampling and downsampling around the
activation.
"""
super().__init__()
self.out_channels = out_channels
self.in_size = in_size
self.out_size = out_size
self.in_sampling_rate = in_sampling_rate
self.out_sampling_rate = out_sampling_rate
self.in_cutoff = in_cutoff
self.out_cutoff = out_cutoff
self.in_half_width = in_half_width
self.out_half_width = out_half_width
self.filter_size = filter_size
self.use_radial_filter = use_radial_filter
self.conv_padding = conv_padding
self.act_upsampling = act_upsampling
# Define bias.
self.bias = nn.Parameter(torch.zeros(out_channels))
# This sampling rate describes the upsampled feature map before
# activation.
temp_sampling_rate = max(in_sampling_rate, out_sampling_rate)
temp_sampling_rate = temp_sampling_rate * act_upsampling
# Design upsampling filter.
up_factor = int(np.rint(temp_sampling_rate / in_sampling_rate))
assert in_sampling_rate * up_factor == temp_sampling_rate
if up_factor > 1:
self.up_factor = up_factor
self.up_taps = filter_size * up_factor
else:
self.up_factor = 1
self.up_taps = 1 # No filtering.
self.register_buffer(
'up_filter',
self.design_lowpass_filter(numtaps=self.up_taps,
cutoff=in_cutoff,
width=in_half_width * 2,
fs=temp_sampling_rate,
radial=False))
# Design downsampling filter.
down_factor = int(np.rint(temp_sampling_rate / out_sampling_rate))
assert out_sampling_rate * down_factor == temp_sampling_rate
if down_factor > 1:
self.down_factor = down_factor
self.down_taps = filter_size * down_factor
else:
self.down_factor = 1
self.down_taps = 1 # No filtering.
self.register_buffer(
'down_filter',
self.design_lowpass_filter(numtaps=self.down_taps,
cutoff=out_cutoff,
width=out_half_width * 2,
fs=temp_sampling_rate,
radial=use_radial_filter))
# Compute padding.
# Desired output size before downsampling.
pad_total = (out_size - 1) * self.down_factor + 1
# Input size after upsampling.
pad_total = pad_total - (in_size + conv_padding) * self.up_factor
# Size reduction caused by the filters.
pad_total = pad_total + self.up_taps + self.down_taps - 2
# Shift sample locations according to the symmetric interpretation.
pad_lo = (pad_total + self.up_factor) // 2
pad_hi = pad_total - pad_lo
self.padding = list(map(int, (pad_lo, pad_hi, pad_lo, pad_hi)))
def extra_repr(self):
return (f'in_size={self.in_size}, '
f'out_size={self.out_size}, '
f'in_srate={self.in_sampling_rate}, '
f'out_srate={self.out_sampling_rate}, '
f'in_cutoff={self.in_cutoff:.3f}, '
f'out_cutoff={self.out_cutoff:.3f}, '
f'in_half_width={self.in_half_width:.3f}, '
f'out_half_width={self.out_half_width:.3f}, '
f'up_factor={self.up_factor}, '
f'up_taps={self.up_taps}, '
f'down_factor={self.down_factor}, '
f'down_taps={self.down_taps}, '
f'filter_size={self.filter_size}, '
f'radial_filter={self.use_radial_filter}, '
f'conv_padding={self.conv_padding}, '
f'act_upsampling={self.act_upsampling}')
@staticmethod
def design_lowpass_filter(numtaps, cutoff, width, fs, radial=False):
"""Designs a low-pass filter.
Args:
numtaps: Length of the filter (number of coefficients, i.e., the
filter order + 1).
cutoff: Cutoff frequency of the output filter.
width: Width of the transition region.
fs: Sampling frequency.
radial: Whether to use radially symmetric jinc-based filter.
(default: False)
"""
if numtaps == 1:
return None
assert numtaps > 1
if not radial: # Separable Kaiser low-pass filter.
f = scipy.signal.firwin(numtaps=numtaps,
cutoff=cutoff,
width=width,
fs=fs)
else: # Radially symmetric jinc-based filter.
x = (np.arange(numtaps) - (numtaps - 1) / 2) / fs
r = np.hypot(*np.meshgrid(x, x))
f = scipy.special.j1(2 * cutoff * (np.pi * r)) / (np.pi * r)
beta = scipy.signal.kaiser_beta(
scipy.signal.kaiser_atten(numtaps, width / (fs / 2)))
w = np.kaiser(numtaps, beta)
f = f * np.outer(w, w)
f = f / np.sum(f)
return torch.as_tensor(f, dtype=torch.float32)
def forward(self, x, gain, slope, clamp, impl='cuda'):
dtype = x.dtype
x = filtered_lrelu.filtered_lrelu(x=x,
fu=self.up_filter,
fd=self.down_filter,
b=self.bias.to(dtype),
up=self.up_factor,
down=self.down_factor,
padding=self.padding,
gain=gain,
slope=slope,
clamp=clamp,
impl=impl)
assert x.dtype == dtype
return x
class DenseLayer(nn.Module):
"""Implements the dense layer."""
def __init__(self,
in_channels,
out_channels,
init_weight_std,
add_bias,
init_bias,
lr_mul,
activation_type):
"""Initializes with layer settings.
Args:
in_channels: Number of channels of the input tensor.
out_channels: Number of channels of the output tensor.
init_weight_std: The initial standard deviation of weight.
add_bias: Whether to add bias onto the fully-connected result.
init_bias: The initial bias value before training.
lr_mul: Learning multiplier for both weight and bias.
activation_type: Type of activation.
"""
super().__init__()
self.in_channels = in_channels
self.out_channels = out_channels
self.init_weight_std = init_weight_std
self.add_bias = add_bias
self.init_bias = init_bias
self.lr_mul = lr_mul
self.activation_type = activation_type
weight_shape = (out_channels, in_channels)
self.weight = nn.Parameter(
torch.randn(*weight_shape) * init_weight_std / lr_mul)
self.wscale = lr_mul / np.sqrt(in_channels)
if add_bias:
init_bias = np.float32(np.float32(init_bias) / lr_mul)
if isinstance(init_bias, np.float32):
self.bias = nn.Parameter(torch.full([out_channels], init_bias))
else:
assert isinstance(init_bias, np.ndarray)
self.bias = nn.Parameter(torch.from_numpy(init_bias))
self.bscale = lr_mul
else:
self.bias = None
def extra_repr(self):
return (f'in_ch={self.in_channels}, '
f'out_ch={self.out_channels}, '
f'init_weight_std={self.init_weight_std}, '
f'bias={self.add_bias}, '
f'init_bias={self.init_bias}, '
f'lr_mul={self.lr_mul:.3f}, '
f'act={self.activation_type}')
def forward(self, x, impl='cuda'):
dtype = x.dtype
if x.ndim != 2:
x = x.flatten(start_dim=1)
weight = self.weight.to(dtype) * self.wscale
bias = None
if self.bias is not None:
bias = self.bias.to(dtype)
if self.bscale != 1.0:
bias = bias * self.bscale
# Fast pass for linear activation.
if self.activation_type == 'linear' and bias is not None:
x = torch.addmm(bias.unsqueeze(0), x, weight.t())
else:
x = x.matmul(weight.t())
x = bias_act.bias_act(x, bias, act=self.activation_type, impl=impl)
assert x.dtype == dtype
return x
# pylint: enable=missing-function-docstring
|