File size: 56,548 Bytes
2f85de4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
# python3.7
"""Contains the implementation of generator described in StyleGAN3.

Compared to that of StyleGAN2, the generator in StyleGAN3 controls the frequency
flow along with the convolutional layers growing.

Paper: https://arxiv.org/pdf/2106.12423.pdf

Official implementation: https://github.com/NVlabs/stylegan3
"""

import numpy as np
import scipy.signal

import torch
import torch.nn as nn
import torch.nn.functional as F

from third_party.stylegan3_official_ops import bias_act
from third_party.stylegan3_official_ops import filtered_lrelu
from third_party.stylegan3_official_ops import conv2d_gradfix
from .utils.ops import all_gather

__all__ = ['StyleGAN3Generator']

# Resolutions allowed.
_RESOLUTIONS_ALLOWED = [8, 16, 32, 64, 128, 256, 512, 1024]

# pylint: disable=missing-function-docstring

class StyleGAN3Generator(nn.Module):
    """Defines the generator network in StyleGAN3.

    NOTE: The synthesized images are with `RGB` channel order and pixel range
    [-1, 1].

    Settings for the mapping network:

    (1) z_dim: Dimension of the input latent space, Z. (default: 512)
    (2) w_dim: Dimension of the output latent space, W. (default: 512)
    (3) repeat_w: Repeat w-code for different layers. (default: True)
    (4) normalize_z: Whether to normalize the z-code. (default: True)
    (5) mapping_layers: Number of layers of the mapping network. (default: 2)
    (6) mapping_fmaps: Number of hidden channels of the mapping network.
        (default: 512)
    (7) mapping_lr_mul: Learning rate multiplier for the mapping network.
        (default: 0.01)

    Settings for conditional generation:

    (1) label_dim: Dimension of the additional label for conditional generation.
        In one-hot conditioning case, it is equal to the number of classes. If
        set to 0, conditioning training will be disabled. (default: 0)
    (2) embedding_dim: Dimension of the embedding space, if needed.
        (default: 512)
    (3) embedding_bias: Whether to add bias to embedding learning.
        (default: True)
    (4) embedding_lr_mul: Learning rate multiplier for the embedding learning.
        (default: 1.0)
    (5) normalize_embedding: Whether to normalize the embedding. (default: True)
    (6) normalize_embedding_latent: Whether to normalize the embedding together
        with the latent. (default: False)

    Settings for the synthesis network:

    (1) resolution: The resolution of the output image. (default: -1)
    (2) image_channels: Number of channels of the output image. (default: 3)
    (3) final_tanh: Whether to use `tanh` to control the final pixel range.
        (default: False)
    (4) output_scale: Factor to scaling the output image. (default: 0.25)
    (5) num_layers: Number of synthesis layers, excluding the first positional
        encoding layer and the last ToRGB layer. (default: 14)
    (6) num_critical: Number of synthesis layers with critical sampling. These
        layers are always set as top (with highest resolution) ones.
    (7) fmaps_base: Factor to control number of feature maps for each layer.
         (default: 32 << 10)
    (8) fmaps_max: Maximum number of feature maps in each layer. (default: 512)
    (9) kernel_size: Size of convolutional kernels. (default: 1)
    (10) conv_clamp: A threshold to clamp the output of convolution layers to
         avoid overflow under FP16 training. (default: None)
    (11) first_cutoff: Cutoff frequency of the first layer. (default: 2)
    (12) first_stopband: Stopband of the first layer. (default: 2 ** 2.1)
    (13) last_stopband_rel: Stopband of the last layer, relative to the last
         cutoff, which is `resolution / 2`. Concretely, `last_stopband` will be
         equal to `resolution / 2 * last_stopband_rel`. (default: 2 ** 0.3)
    (14) margin_size: Size of margin for each feature map. (default: 10)
    (15) filter_size: Size of filter for upsampling and downsampling around the
         activation. (default: 6)
    (16) act_upsampling: Factor used to upsample the feature map before
         activation for anti-aliasing. (default: 2)
    (17) use_radial_filter: Whether to use radial filter for downsampling after
         the activation. (default: False)
    (18) eps: A small value to avoid divide overflow. (default: 1e-8)

    Runtime settings:

    (1) w_moving_decay: Decay factor for updating `w_avg`, which is used for
        training only. Set `None` to disable. (default: 0.998)
    (2) sync_w_avg: Synchronizing the stats of `w_avg` across replicas. If set
        as `True`, the stats will be more accurate, yet the speed maybe a little
        bit slower. (default: False)
    (3) style_mixing_prob: Probability to perform style mixing as a training
        regularization. Set `None` to disable. (default: None)
    (4) trunc_psi: Truncation psi, set `None` to disable. (default: None)
    (5) trunc_layers: Number of layers to perform truncation. (default: None)
    (6) magnitude_moving_decay: Decay factor for updating `magnitude_ema` in
        each `SynthesisLayer`, which is used for training only. Set `None` to
        disable. (default: 0.999)
    (7) update_ema: Whether to update `w_avg` in the `MappingNetwork` and
        `magnitude_ema` in each `SynthesisLayer`. This field only takes effect
        in `training` model. (default: False)
    (8) fp16_res: Layers at resolution higher than (or equal to) this field will
        use `float16` precision for computation. This is merely used for
        acceleration. If set as `None`, all layers will use `float32` by
        default. (default: None)
    (9) impl: Implementation mode of some particular ops, e.g., `filtering`,
        `bias_act`, etc. `cuda` means using the official CUDA implementation
        from StyleGAN3, while `ref` means using the native PyTorch ops.
        (default: `cuda`)
    """

    def __init__(self,
                 # Settings for mapping network.
                 z_dim=512,
                 w_dim=512,
                 repeat_w=True,
                 normalize_z=True,
                 mapping_layers=2,
                 mapping_fmaps=512,
                 mapping_lr_mul=0.01,
                 # Settings for conditional generation.
                 label_dim=0,
                 embedding_dim=512,
                 embedding_bias=True,
                 embedding_lr_mul=1.0,
                 normalize_embedding=True,
                 normalize_embedding_latent=False,
                 # Settings for synthesis network.
                 resolution=-1,
                 image_channels=3,
                 final_tanh=False,
                 output_scale=0.25,
                 num_layers=14,
                 num_critical=2,
                 fmaps_base=32 << 10,
                 fmaps_max=512,
                 kernel_size=1,
                 conv_clamp=256,
                 first_cutoff=2,
                 first_stopband=2 ** 2.1,
                 last_stopband_rel=2 ** 0.3,
                 margin_size=10,
                 filter_size=6,
                 act_upsampling=2,
                 use_radial_filter=False,
                 eps=1e-8):
        """Initializes with basic settings."""
        super().__init__()

        if resolution not in _RESOLUTIONS_ALLOWED:
            raise ValueError(f'Invalid resolution: `{resolution}`!\n'
                             f'Resolutions allowed: {_RESOLUTIONS_ALLOWED}.')

        self.z_dim = z_dim
        self.w_dim = w_dim
        self.repeat_w = repeat_w
        self.normalize_z = normalize_z
        self.mapping_layers = mapping_layers
        self.mapping_fmaps = mapping_fmaps
        self.mapping_lr_mul = mapping_lr_mul

        self.label_dim = label_dim
        self.embedding_dim = embedding_dim
        self.embedding_bias = embedding_bias
        self.embedding_lr_mul = embedding_lr_mul
        self.normalize_embedding = normalize_embedding
        self.normalize_embedding_latent = normalize_embedding_latent

        self.resolution = resolution
        self.image_channels = image_channels
        self.final_tanh = final_tanh
        self.output_scale = output_scale
        self.num_layers = num_layers + 2  # Including InputLayer and ToRGBLayer.
        self.num_critical = num_critical
        self.fmaps_base = fmaps_base
        self.fmaps_max = fmaps_max
        self.kernel_size = kernel_size
        self.conv_clamp = conv_clamp
        self.first_cutoff = first_cutoff
        self.first_stopband = first_stopband
        self.last_stopband_rel = last_stopband_rel
        self.margin_size = margin_size
        self.filter_size = filter_size
        self.act_upsampling = act_upsampling
        self.use_radial_filter = use_radial_filter
        self.eps = eps

        # Dimension of latent space, which is convenient for sampling.
        self.latent_dim = (z_dim,)

        self.mapping = MappingNetwork(
            input_dim=z_dim,
            output_dim=w_dim,
            num_outputs=self.num_layers,
            repeat_output=repeat_w,
            normalize_input=normalize_z,
            num_layers=mapping_layers,
            hidden_dim=mapping_fmaps,
            lr_mul=mapping_lr_mul,
            label_dim=label_dim,
            embedding_dim=embedding_dim,
            embedding_bias=embedding_bias,
            embedding_lr_mul=embedding_lr_mul,
            normalize_embedding=normalize_embedding,
            normalize_embedding_latent=normalize_embedding_latent,
            eps=eps)

        # This is used for truncation trick.
        if self.repeat_w:
            self.register_buffer('w_avg', torch.zeros(w_dim))
        else:
            self.register_buffer('w_avg', torch.zeros(self.num_layers * w_dim))

        self.synthesis = SynthesisNetwork(resolution=resolution,
                                          w_dim=w_dim,
                                          image_channels=image_channels,
                                          final_tanh=final_tanh,
                                          output_scale=output_scale,
                                          num_layers=num_layers,
                                          num_critical=num_critical,
                                          fmaps_base=fmaps_base,
                                          fmaps_max=fmaps_max,
                                          kernel_size=kernel_size,
                                          conv_clamp=conv_clamp,
                                          first_cutoff=first_cutoff,
                                          first_stopband=first_stopband,
                                          last_stopband_rel=last_stopband_rel,
                                          margin_size=margin_size,
                                          filter_size=filter_size,
                                          act_upsampling=act_upsampling,
                                          use_radial_filter=use_radial_filter,
                                          eps=eps)

        self.var_mapping = {'w_avg': 'mapping.w_avg'}
        for key, val in self.mapping.var_mapping.items():
            self.var_mapping[f'mapping.{key}'] = f'mapping.{val}'
        for key, val in self.synthesis.var_mapping.items():
            self.var_mapping[f'synthesis.{key}'] = f'synthesis.{val}'

    def set_space_of_latent(self, space_of_latent):
        """Sets the space to which the latent code belong.

        See `SynthesisNetwork` for more details.
        """
        self.synthesis.set_space_of_latent(space_of_latent)

    def forward(self,
                z,
                label=None,
                w_moving_decay=0.998,
                sync_w_avg=False,
                style_mixing_prob=None,
                trunc_psi=None,
                trunc_layers=None,
                magnitude_moving_decay=0.999,
                update_ema=False,
                fp16_res=None,
                impl='cuda'):
        """Connects mapping network and synthesis network.

        This forward function will also update the average `w_code`, perform
        style mixing as a training regularizer, and do truncation trick, which
        is specially designed for inference.

        Concretely, the truncation trick acts as follows:

        For layers in range [0, truncation_layers), the truncated w-code is
        computed as

        w_new = w_avg + (w - w_avg) * trunc_psi

        To disable truncation, please set

        (1) trunc_psi = 1.0 (None) OR
        (2) trunc_layers = 0 (None)
        """

        mapping_results = self.mapping(z, label, impl=impl)

        w = mapping_results['w']
        if self.training and update_ema and w_moving_decay is not None:
            if sync_w_avg:
                batch_w_avg = all_gather(w.detach()).mean(dim=0)
            else:
                batch_w_avg = w.detach().mean(dim=0)
            self.w_avg.copy_(batch_w_avg.lerp(self.w_avg, w_moving_decay))

        wp = mapping_results.pop('wp')
        if self.training and style_mixing_prob is not None:
            if np.random.uniform() < style_mixing_prob:
                new_z = torch.randn_like(z)
                new_wp = self.mapping(new_z, label, impl=impl)['wp']
                mixing_cutoff = np.random.randint(1, self.num_layers)
                wp[:, mixing_cutoff:] = new_wp[:, mixing_cutoff:]

        if not self.training:
            trunc_psi = 1.0 if trunc_psi is None else trunc_psi
            trunc_layers = 0 if trunc_layers is None else trunc_layers
            if trunc_psi < 1.0 and trunc_layers > 0:
                w_avg = self.w_avg.reshape(1, -1, self.w_dim)[:, :trunc_layers]
                wp[:, :trunc_layers] = w_avg.lerp(
                    wp[:, :trunc_layers], trunc_psi)

        synthesis_results = self.synthesis(
            wp,
            magnitude_moving_decay=magnitude_moving_decay,
            update_ema=update_ema,
            fp16_res=fp16_res,
            impl=impl)

        return {**mapping_results, **synthesis_results}


class MappingNetwork(nn.Module):
    """Implements the latent space mapping network.

    Basically, this network executes several dense layers in sequence, and the
    label embedding if needed.
    """

    def __init__(self,
                 input_dim,
                 output_dim,
                 num_outputs,
                 repeat_output,
                 normalize_input,
                 num_layers,
                 hidden_dim,
                 lr_mul,
                 label_dim,
                 embedding_dim,
                 embedding_bias,
                 embedding_lr_mul,
                 normalize_embedding,
                 normalize_embedding_latent,
                 eps):
        super().__init__()

        self.input_dim = input_dim
        self.output_dim = output_dim
        self.num_outputs = num_outputs
        self.repeat_output = repeat_output
        self.normalize_input = normalize_input
        self.num_layers = num_layers
        self.hidden_dim = hidden_dim
        self.lr_mul = lr_mul
        self.label_dim = label_dim
        self.embedding_dim = embedding_dim
        self.embedding_bias = embedding_bias
        self.embedding_lr_mul = embedding_lr_mul
        self.normalize_embedding = normalize_embedding
        self.normalize_embedding_latent = normalize_embedding_latent
        self.eps = eps

        self.var_mapping = {}

        self.norm = PixelNormLayer(dim=1, eps=eps)

        if self.label_dim > 0:
            input_dim = input_dim + embedding_dim
            self.embedding = DenseLayer(in_channels=label_dim,
                                        out_channels=embedding_dim,
                                        init_weight_std=1.0,
                                        add_bias=embedding_bias,
                                        init_bias=0.0,
                                        lr_mul=embedding_lr_mul,
                                        activation_type='linear')
            self.var_mapping['embedding.weight'] = 'embed.weight'
            if self.embedding_bias:
                self.var_mapping['embedding.bias'] = 'embed.bias'

        if num_outputs is not None and not repeat_output:
            output_dim = output_dim * num_outputs
        for i in range(num_layers):
            in_channels = (input_dim if i == 0 else hidden_dim)
            out_channels = (output_dim if i == (num_layers - 1) else hidden_dim)
            self.add_module(f'dense{i}',
                            DenseLayer(in_channels=in_channels,
                                       out_channels=out_channels,
                                       init_weight_std=1.0,
                                       add_bias=True,
                                       init_bias=0.0,
                                       lr_mul=lr_mul,
                                       activation_type='lrelu'))
            self.var_mapping[f'dense{i}.weight'] = f'fc{i}.weight'
            self.var_mapping[f'dense{i}.bias'] = f'fc{i}.bias'

    def forward(self, z, label=None, impl='cuda'):
        if z.ndim != 2 or z.shape[1] != self.input_dim:
            raise ValueError(f'Input latent code should be with shape '
                             f'[batch_size, input_dim], where '
                             f'`input_dim` equals to {self.input_dim}!\n'
                             f'But `{z.shape}` is received!')
        if self.normalize_input:
            z = self.norm(z)

        if self.label_dim > 0:
            if label is None:
                raise ValueError(f'Model requires an additional label '
                                 f'(with dimension {self.label_dim}) as input, '
                                 f'but no label is received!')
            if label.ndim != 2 or label.shape != (z.shape[0], self.label_dim):
                raise ValueError(f'Input label should be with shape '
                                 f'[batch_size, label_dim], where '
                                 f'`batch_size` equals to that of '
                                 f'latent codes ({z.shape[0]}) and '
                                 f'`label_dim` equals to {self.label_dim}!\n'
                                 f'But `{label.shape}` is received!')
            label = label.to(dtype=torch.float32)
            embedding = self.embedding(label, impl=impl)
            if self.normalize_embedding:
                embedding = self.norm(embedding)
            w = torch.cat((z, embedding), dim=1)
        else:
            w = z

        if self.label_dim > 0 and self.normalize_embedding_latent:
            w = self.norm(w)

        for i in range(self.num_layers):
            w = getattr(self, f'dense{i}')(w, impl=impl)

        wp = None
        if self.num_outputs is not None:
            if self.repeat_output:
                wp = w.unsqueeze(1).repeat((1, self.num_outputs, 1))
            else:
                wp = w.reshape(-1, self.num_outputs, self.output_dim)

        results = {
            'z': z,
            'label': label,
            'w': w,
            'wp': wp,
        }
        if self.label_dim > 0:
            results['embedding'] = embedding
        return results


class SynthesisNetwork(nn.Module):
    """Implements the image synthesis network.

    Basically, this network executes several convolutional layers in sequence.
    """

    def __init__(self,
                 resolution,
                 w_dim,
                 image_channels,
                 final_tanh,
                 output_scale,
                 num_layers,
                 num_critical,
                 fmaps_base,
                 fmaps_max,
                 kernel_size,
                 conv_clamp,
                 first_cutoff,
                 first_stopband,
                 last_stopband_rel,
                 margin_size,
                 filter_size,
                 act_upsampling,
                 use_radial_filter,
                 eps):
        super().__init__()

        self.resolution = resolution
        self.w_dim = w_dim
        self.image_channels = image_channels
        self.final_tanh = final_tanh
        self.output_scale = output_scale
        self.num_layers = num_layers
        self.num_critical = num_critical
        self.fmaps_base = fmaps_base
        self.fmaps_max = fmaps_max
        self.kernel_size = kernel_size
        self.conv_clamp = conv_clamp
        self.first_cutoff = first_cutoff
        self.first_stopband = first_stopband
        self.last_stopband_rel = last_stopband_rel
        self.margin_size = margin_size
        self.filter_size = filter_size
        self.act_upsampling = act_upsampling
        self.use_radial_filter = use_radial_filter
        self.eps = eps

        self.var_mapping = {}

        # Get layer settings.
        last_cutoff = resolution / 2
        last_stopband = last_cutoff * last_stopband_rel
        layer_indices = np.arange(num_layers + 1)
        exponents = np.minimum(layer_indices / (num_layers - num_critical), 1)
        cutoffs = first_cutoff * (last_cutoff / first_cutoff) ** exponents
        stopbands = (
            first_stopband * (last_stopband / first_stopband) ** exponents)
        sampling_rates = np.exp2(np.ceil(np.log2(
            np.minimum(stopbands * 2, self.resolution))))
        sampling_rates = np.int64(sampling_rates)
        half_widths = np.maximum(stopbands, sampling_rates / 2) - cutoffs
        sizes = sampling_rates + margin_size * 2
        sizes[-2:] = resolution
        sizes = np.int64(sizes)
        channels = np.rint(np.minimum((fmaps_base / 2) / cutoffs, fmaps_max))
        channels[-1] = image_channels
        channels = np.int64(channels)

        self.cutoffs = cutoffs
        self.stopbands = stopbands
        self.sampling_rates = sampling_rates
        self.half_widths = half_widths
        self.sizes = sizes
        self.channels = channels

        # Input layer, with positional encoding.
        self.early_layer = InputLayer(w_dim=w_dim,
                                      channels=channels[0],
                                      size=sizes[0],
                                      sampling_rate=sampling_rates[0],
                                      cutoff=cutoffs[0])
        self.var_mapping['early_layer.weight'] = 'input.weight'
        self.var_mapping['early_layer.affine.weight'] = 'input.affine.weight'
        self.var_mapping['early_layer.affine.bias'] = 'input.affine.bias'
        self.var_mapping['early_layer.transform'] = 'input.transform'
        self.var_mapping['early_layer.frequency'] = 'input.freqs'
        self.var_mapping['early_layer.phase'] = 'input.phases'

        # Convolutional layers.
        for idx in range(num_layers + 1):
            # Position related settings.
            if idx < num_layers:
                kernel_size = self.kernel_size
                demodulate = True
                act_upsampling = self.act_upsampling
            else:  # ToRGB layer.
                kernel_size = 1
                demodulate = False
                act_upsampling = 1
            if idx < num_layers - num_critical:  # Non-critical sampling.
                use_radial_filter = self.use_radial_filter
            else:  # Critical sampling.
                use_radial_filter = False

            prev_idx = max(idx - 1, 0)
            layer_name = f'layer{idx}'
            official_layer_name = f'L{idx}_{sizes[idx]}_{channels[idx]}'
            self.add_module(
                layer_name,
                SynthesisLayer(in_channels=channels[prev_idx],
                               out_channels=channels[idx],
                               w_dim=w_dim,
                               kernel_size=kernel_size,
                               demodulate=demodulate,
                               eps=eps,
                               conv_clamp=conv_clamp,
                               in_size=sizes[prev_idx],
                               out_size=sizes[idx],
                               in_sampling_rate=sampling_rates[prev_idx],
                               out_sampling_rate=sampling_rates[idx],
                               in_cutoff=cutoffs[prev_idx],
                               out_cutoff=cutoffs[idx],
                               in_half_width=half_widths[prev_idx],
                               out_half_width=half_widths[idx],
                               filter_size=filter_size,
                               use_radial_filter=use_radial_filter,
                               act_upsampling=act_upsampling))

            self.var_mapping[f'{layer_name}.magnitude_ema'] = (
                f'{official_layer_name}.magnitude_ema')
            self.var_mapping[f'{layer_name}.conv.weight'] = (
                f'{official_layer_name}.weight')
            self.var_mapping[f'{layer_name}.conv.style.weight'] = (
                f'{official_layer_name}.affine.weight')
            self.var_mapping[f'{layer_name}.conv.style.bias'] = (
                f'{official_layer_name}.affine.bias')
            self.var_mapping[f'{layer_name}.filter.bias'] = (
                f'{official_layer_name}.bias')
            if idx < num_layers:  # ToRGB layer does not need filters.
                self.var_mapping[f'{layer_name}.filter.up_filter'] = (
                    f'{official_layer_name}.up_filter')
                self.var_mapping[f'{layer_name}.filter.down_filter'] = (
                    f'{official_layer_name}.down_filter')

    def set_space_of_latent(self, space_of_latent):
        """Sets the space to which the latent code belong.

        This function is particularly used for choosing how to inject the latent
        code into the convolutional layers. The original generator will take a
        W-Space code and apply it for style modulation after an affine
        transformation. But, sometimes, it may need to directly feed an already
        affine-transformed code into the convolutional layer, e.g., when
        training an encoder for GAN inversion. We term the transformed space as
        Style Space (or Y-Space). This function is designed to tell the
        convolutional layers how to use the input code.

        Args:
            space_of_latent: The space to which the latent code belong. Case
                insensitive. Support `W` and `Y`.
        """
        space_of_latent = space_of_latent.upper()
        for module in self.modules():
            if isinstance(module, ModulateConvLayer):
                setattr(module, 'space_of_latent', space_of_latent)

    def forward(self,
                wp,
                magnitude_moving_decay=0.999,
                update_ema=False,
                fp16_res=None,
                impl='cuda'):
        results = {'wp': wp}

        x = self.early_layer(wp[:, 0])
        for idx, sampling_rate in enumerate(self.sampling_rates):
            if fp16_res is not None and sampling_rate >= fp16_res:
                x = x.to(torch.float16)
            layer = getattr(self, f'layer{idx}')
            x, style = layer(x, wp[:, idx + 1],
                             magnitude_moving_decay=magnitude_moving_decay,
                             update_ema=update_ema,
                             impl=impl)
            results[f'style{idx}'] = style

        if self.output_scale != 1:
            x = x * self.output_scale
        x = x.to(torch.float32)
        if self.final_tanh:
            x = torch.tanh(x)
        results['image'] = x
        return results


class PixelNormLayer(nn.Module):
    """Implements pixel-wise feature vector normalization layer."""

    def __init__(self, dim, eps):
        super().__init__()
        self.dim = dim
        self.eps = eps

    def extra_repr(self):
        return f'dim={self.dim}, epsilon={self.eps}'

    def forward(self, x):
        scale = (x.square().mean(dim=self.dim, keepdim=True) + self.eps).rsqrt()
        return x * scale


class InputLayer(nn.Module):
    """Implements the input layer with positional encoding.

    Basically, this block outputs a feature map with shape
    `(channels, size, size)` based on the coordinate information.
    `sampling_rate` and `cutoff` are used to control the coordinate range and
    strength respectively.

    For a low-pass filter, `cutoff` is the same as the `bandwidth`.
    The initial frequency of the starting feature map is controlled by the
    positional encoding `sin(2 * pi * x)`, where
    `x = trans(coord) * frequency + phase`. We would like to introduce rich
    information (i.e. frequencies), but keep all frequencies lower than
    stopband, which is `sampling_rate / 2`.

    Besides, this layer also supports learning a transformation from the latent
    code w, and providing a customized transformation for inference. Please
    use the buffer `transform`.

    NOTE: `size` is different from `sampling_rate`. `sampling_rate` is the
    actual size of the current stage, which determines the maximum frequency
    that the feature maps can hold. `size` is the actual height and width of the
    current feature map, including the extended border.
    """

    def __init__(self, w_dim, channels, size, sampling_rate, cutoff):
        super().__init__()

        self.w_dim = w_dim
        self.channels = channels
        self.size = size
        self.sampling_rate = sampling_rate
        self.cutoff = cutoff

        # Coordinate of the entire feature map, with resolution (size, size).
        # The coordinate range for the central (sampling_rate, sampling_rate)
        # region is set as (-0.0, 0.5), which extends to the remaining region.
        theta = torch.eye(2, 3)
        theta[0, 0] = 0.5 / sampling_rate * size
        theta[1, 1] = 0.5 / sampling_rate * size
        grid = F.affine_grid(theta=theta.unsqueeze(0),
                             size=(1, 1, size, size),
                             align_corners=False)
        self.register_buffer('grid', grid)

        # Draw random frequency from a uniform 2D disc for each channel
        # regarding X and Y dimension. And also draw a random phase for each
        # channel. Accordingly, each channel has three pre-defined parameters,
        # which are X-frequency, Y-frequency, and phase.
        frequency = torch.randn(channels, 2)
        radius = frequency.square().sum(dim=1, keepdim=True).sqrt()
        frequency = frequency / (radius * radius.square().exp().pow(0.25))
        frequency = frequency * cutoff
        self.register_buffer('frequency', frequency)
        phase = torch.rand(channels) - 0.5
        self.register_buffer('phase', phase)

        # This layer is used to map the latent code w to transform factors,
        # with order: cos(angle), sin(angle), transpose_x, transpose_y.
        self.affine = DenseLayer(in_channels=w_dim,
                                 out_channels=4,
                                 init_weight_std=0.0,
                                 add_bias=True,
                                 init_bias=(1, 0, 0, 0),
                                 lr_mul=1.0,
                                 activation_type='linear')

        # It is possible to use this buffer to customize the transform of the
        # output synthesis.
        self.register_buffer('transform', torch.eye(3))

        # Use 1x1 conv to convert positional encoding to features.
        self.weight = nn.Parameter(torch.randn(channels, channels))
        self.weight_scale = 1 / np.sqrt(channels)

    def extra_repr(self):
        return (f'channels={self.channels}, '
                f'size={self.size}, '
                f'sampling_rate={self.sampling_rate}, '
                f'cutoff={self.cutoff:.3f}, ')

    def forward(self, w):
        batch = w.shape[0]

        # Get transformation matrix.
        # Factor controlled by latent code.
        transformation_factor = self.affine(w)
        # Ensure the range of cosine and sine value (first two dimension).
        _norm = transformation_factor[:, :2].norm(dim=1, keepdim=True)
        transformation_factor = transformation_factor / _norm
        # Rotation.
        rotation = torch.eye(3, device=w.device).unsqueeze(0)
        rotation = rotation.repeat((batch, 1, 1))
        rotation[:, 0, 0] = transformation_factor[:, 0]
        rotation[:, 0, 1] = -transformation_factor[:, 1]
        rotation[:, 1, 0] = transformation_factor[:, 1]
        rotation[:, 1, 1] = transformation_factor[:, 0]
        # Translation.
        translation = torch.eye(3, device=w.device).unsqueeze(0)
        translation = translation.repeat((batch, 1, 1))
        translation[:, 0, 2] = -transformation_factor[:, 2]
        translation[:, 1, 2] = -transformation_factor[:, 3]
        # Customized transformation.
        transform = rotation @ translation @ self.transform.unsqueeze(0)

        # Transform frequency and shift, which is equivalent to transforming
        # the coordinate. For example, given a coordinate, X, we would like to
        # first transform it with the rotation matrix, R, and the translation
        # matrix, T, as X' = RX + T. Then, we will apply frequency, f, and
        # phase, p, with sin(2 * pi * (fX' + p)). Natively, we have
        # fX' + p = f(RX + T) + p = (fR)X + (fT + p)
        frequency = self.frequency.unsqueeze(0) @ transform[:, :2, :2]  # [NC2]
        phase = self.frequency.unsqueeze(0) @ transform[:, :2, 2:]      # [NC]
        phase = phase.squeeze(2) + self.phase.unsqueeze(0)              # [NC]

        # Positional encoding.
        x = self.grid                                                # [NHW2]
        x = x.unsqueeze(3)                                           # [NHW12]
        x = x @ frequency.transpose(1, 2).unsqueeze(1).unsqueeze(2)  # [NHW1C]
        x = x.squeeze(3)                                             # [NHWC]
        x = x + phase.unsqueeze(1).unsqueeze(2)                      # [NHWC]
        x = torch.sin(2 * np.pi * x)                                 # [NHWC]

        # Dampen out-of-band frequency that may be introduced by the customized
        # transform `self.transform`.
        frequency_norm = frequency.norm(dim=2)
        stopband = self.sampling_rate / 2
        factor = (frequency_norm - self.cutoff) / (stopband - self.cutoff)
        amplitude = (1 - factor).clamp(0, 1)         # [NC]
        x = x * amplitude.unsqueeze(1).unsqueeze(2)  # [NHWC]

        # Project positional encoding to features.
        weight = self.weight * self.weight_scale
        x = x @ weight.t()

        return x.permute(0, 3, 1, 2).contiguous()


class SynthesisLayer(nn.Module):
    """Implements the synthesis layer.

    Each synthesis layer (including ToRGB layer) consists of a
    `ModulateConvLayer` and a `FilteringActLayer`. Besides, this layer will
    trace the magnitude (norm) of the input feature map, and update the
    statistic with `magnitude_moving_decay`.
    """

    def __init__(self,
                 # Settings for modulated convolution.
                 in_channels,
                 out_channels,
                 w_dim,
                 kernel_size,
                 demodulate,
                 eps,
                 conv_clamp,
                 # Settings for filtering activation.
                 in_size,
                 out_size,
                 in_sampling_rate,
                 out_sampling_rate,
                 in_cutoff,
                 out_cutoff,
                 in_half_width,
                 out_half_width,
                 filter_size,
                 use_radial_filter,
                 act_upsampling):
        """Initializes with layer settings.

        Args:
            in_channels: Number of channels of the input tensor.
            out_channels: Number of channels of the output tensor.
            w_dim: Dimension of W space for style modulation.
            kernel_size: Size of the convolutional kernels.
            demodulate: Whether to perform style demodulation.
            eps: A small value to avoid divide overflow.
            conv_clamp: A threshold to clamp the output of convolution layers to
                avoid overflow under FP16 training.
            in_size: Size of the input feature map, i.e., height and width.
            out_size: Size of the output feature map, i.e., height and width.
            in_sampling_rate: Sampling rate of the input feature map. Different
                from `in_size` that includes extended border, this field
                controls the actual maximum frequency that can be represented
                by the feature map.
            out_sampling_rate: Sampling rate of the output feature map.
            in_cutoff: Cutoff frequency of the input feature map.
            out_cutoff: Cutoff frequency of the output feature map.
            in_half_width: Half-width of the transition band of the input
                feature map.
            out_half_width: Half-width of the transition band of the output
                feature map.
            filter_size: Size of the filter used in this layer.
            use_radial_filter: Whether to use radial filter.
            act_upsampling: Upsampling factor used before the activation.
                `1` means do not wrap upsampling and downsampling around the
                activation.
        """
        super().__init__()

        self.in_channels = in_channels
        self.out_channels = out_channels
        self.w_dim = w_dim
        self.kernel_size = kernel_size
        self.demodulate = demodulate
        self.eps = eps
        self.conv_clamp = conv_clamp

        self.in_size = in_size
        self.out_size = out_size
        self.in_sampling_rate = in_sampling_rate
        self.out_sampling_rate = out_sampling_rate
        self.in_cutoff = in_cutoff
        self.out_cutoff = out_cutoff
        self.in_half_width = in_half_width
        self.out_half_width = out_half_width
        self.filter_size = filter_size
        self.use_radial_filter = use_radial_filter
        self.act_upsampling = act_upsampling

        self.conv = ModulateConvLayer(in_channels=in_channels,
                                      out_channels=out_channels,
                                      w_dim=w_dim,
                                      kernel_size=kernel_size,
                                      demodulate=demodulate,
                                      eps=eps)
        self.register_buffer('magnitude_ema', torch.ones(()))
        self.filter = FilteringActLayer(out_channels=out_channels,
                                        in_size=in_size,
                                        out_size=out_size,
                                        in_sampling_rate=in_sampling_rate,
                                        out_sampling_rate=out_sampling_rate,
                                        in_cutoff=in_cutoff,
                                        out_cutoff=out_cutoff,
                                        in_half_width=in_half_width,
                                        out_half_width=out_half_width,
                                        filter_size=filter_size,
                                        use_radial_filter=use_radial_filter,
                                        conv_padding=self.conv.padding,
                                        act_upsampling=act_upsampling)

    def extra_repr(self):
        return f'conv_clamp={self.conv_clamp}'

    def forward(self,
                x,
                w,
                magnitude_moving_decay=0.999,
                update_ema=False,
                impl='cuda'):
        if self.training and update_ema and magnitude_moving_decay is not None:
            magnitude = x.detach().to(torch.float32).square().mean()
            self.magnitude_ema.copy_(
                magnitude.lerp(self.magnitude_ema, magnitude_moving_decay))

        input_gain = self.magnitude_ema.rsqrt()
        x, style = self.conv(x, w, gain=input_gain, impl=impl)
        if self.act_upsampling > 1:
            x = self.filter(x, np.sqrt(2), 0.2, self.conv_clamp, impl=impl)
        else:
            x = self.filter(x, 1, 1, self.conv_clamp, impl=impl)

        return x, style


class ModulateConvLayer(nn.Module):
    """Implements the convolutional layer with style modulation.

    Different from the one introduced in StyleGAN2, this layer has following
    changes:

    (1) fusing `conv` and `style modulation` into one op by default
    (2) NOT adding a noise onto the output feature map.
    (3) NOT activating the feature map, which is moved to `FilteringActLayer`.
    """

    def __init__(self,
                 in_channels,
                 out_channels,
                 w_dim,
                 kernel_size,
                 demodulate,
                 eps):
        """Initializes with layer settings.

        Args:
            in_channels: Number of channels of the input tensor.
            out_channels: Number of channels of the output tensor.
            w_dim: Dimension of W space for style modulation.
            kernel_size: Size of the convolutional kernels.
            demodulate: Whether to perform style demodulation.
            eps: A small value to avoid divide overflow.
        """
        super().__init__()

        self.in_channels = in_channels
        self.out_channels = out_channels
        self.w_dim = w_dim
        self.kernel_size = kernel_size
        self.demodulate = demodulate
        self.eps = eps

        self.space_of_latent = 'W'

        # Set up weight.
        weight_shape = (out_channels, in_channels, kernel_size, kernel_size)
        self.weight = nn.Parameter(torch.randn(*weight_shape))
        self.wscale = 1.0 / np.sqrt(kernel_size * kernel_size * in_channels)
        self.padding = kernel_size - 1

        # Set up style.
        self.style = DenseLayer(in_channels=w_dim,
                                out_channels=in_channels,
                                init_weight_std=1.0,
                                add_bias=True,
                                init_bias=1.0,
                                lr_mul=1.0,
                                activation_type='linear')

    def extra_repr(self):
        return (f'in_ch={self.in_channels}, '
                f'out_ch={self.out_channels}, '
                f'ksize={self.kernel_size}, '
                f'demodulate={self.demodulate}')

    def forward_style(self, w, impl='cuda'):
        """Gets style code from the given input.

        More specifically, if the input is from W-Space, it will be projected by
        an affine transformation. If it is from the Style Space (Y-Space), no
        operation is required.

        NOTE: For codes from Y-Space, we use slicing to make sure the dimension
        is correct, in case that the code is padded before fed into this layer.
        """
        space_of_latent = self.space_of_latent.upper()
        if space_of_latent == 'W':
            if w.ndim != 2 or w.shape[1] != self.w_dim:
                raise ValueError(f'The input tensor should be with shape '
                                 f'[batch_size, w_dim], where '
                                 f'`w_dim` equals to {self.w_dim}!\n'
                                 f'But `{w.shape}` is received!')
            style = self.style(w, impl=impl)
        elif space_of_latent == 'Y':
            if w.ndim != 2 or w.shape[1] < self.in_channels:
                raise ValueError(f'The input tensor should be with shape '
                                 f'[batch_size, y_dim], where '
                                 f'`y_dim` equals to {self.in_channels}!\n'
                                 f'But `{w.shape}` is received!')
            style = w[:, :self.in_channels]
        else:
            raise NotImplementedError(f'Not implemented `space_of_latent`: '
                                      f'`{space_of_latent}`!')
        return style

    def forward(self, x, w, gain=None, impl='cuda'):
        dtype = x.dtype
        N, C, H, W = x.shape

        # Affine on `w`.
        style = self.forward_style(w, impl=impl)
        if not self.demodulate:
            _style = style * self.wscale  # Equivalent to scaling weight.
        else:
            _style = style

        weight = self.weight
        out_ch, in_ch, kh, kw = weight.shape
        assert in_ch == C

        # Pre-normalize inputs.
        if self.demodulate:
            weight = (weight *
                      weight.square().mean(dim=(1, 2, 3), keepdim=True).rsqrt())
            _style = _style * _style.square().mean().rsqrt()

        weight = weight.unsqueeze(0)
        weight = weight * _style.reshape(N, 1, in_ch, 1, 1)  # modulation
        if self.demodulate:
            decoef = (weight.square().sum(dim=(2, 3, 4)) + self.eps).rsqrt()
            weight = weight * decoef.reshape(N, out_ch, 1, 1, 1)  # demodulation

        if gain is not None:
            gain = gain.expand(N, in_ch)
            weight = weight * gain.reshape(N, 1, in_ch, 1, 1)

        # Fuse `conv` and `style modulation` as one op, using group convolution.
        x = x.reshape(1, N * in_ch, H, W)
        w = weight.reshape(N * out_ch, in_ch, kh, kw).to(dtype)
        x = conv2d_gradfix.conv2d(
            x, w, padding=self.padding, groups=N, impl=impl)
        x = x.reshape(N, out_ch, x.shape[2], x.shape[3])

        assert x.dtype == dtype
        assert style.dtype == torch.float32
        return x, style


class FilteringActLayer(nn.Module):
    """Implements the activation, wrapped with upsampling and downsampling.

    Basically, this layer executes the following operations in order:

    (1) Apply bias.
    (2) Upsample the feature map to increase sampling rate.
    (3) Apply non-linearity as activation.
    (4) Downsample the feature map to target size.

    This layer is mostly borrowed from the official implementation:

    https://github.com/NVlabs/stylegan3/blob/main/training/networks_stylegan3.py
    """

    def __init__(self,
                 out_channels,
                 in_size,
                 out_size,
                 in_sampling_rate,
                 out_sampling_rate,
                 in_cutoff,
                 out_cutoff,
                 in_half_width,
                 out_half_width,
                 filter_size,
                 use_radial_filter,
                 conv_padding,
                 act_upsampling):
        """Initializes with layer settings.

        Args:
            out_channels: Number of output channels, which is used for `bias`.
            in_size: Size of the input feature map, i.e., height and width.
            out_size: Size of the output feature map, i.e., height and width.
            in_sampling_rate: Sampling rate of the input feature map. Different
                from `in_size` that includes extended border, this field
                controls the actual maximum frequency that can be represented
                by the feature map.
            out_sampling_rate: Sampling rate of the output feature map.
            in_cutoff: Cutoff frequency of the input feature map.
            out_cutoff: Cutoff frequency of the output feature map.
            in_half_width: Half-width of the transition band of the input
                feature map.
            out_half_width: Half-width of the transition band of the output
                feature map.
            filter_size: Size of the filter used in this layer.
            use_radial_filter: Whether to use radial filter.
            conv_padding: The padding used in the previous convolutional layer.
            act_upsampling: Upsampling factor used before the activation.
                `1` means do not wrap upsampling and downsampling around the
                activation.
        """
        super().__init__()

        self.out_channels = out_channels
        self.in_size = in_size
        self.out_size = out_size
        self.in_sampling_rate = in_sampling_rate
        self.out_sampling_rate = out_sampling_rate
        self.in_cutoff = in_cutoff
        self.out_cutoff = out_cutoff
        self.in_half_width = in_half_width
        self.out_half_width = out_half_width
        self.filter_size = filter_size
        self.use_radial_filter = use_radial_filter
        self.conv_padding = conv_padding
        self.act_upsampling = act_upsampling

        # Define bias.
        self.bias = nn.Parameter(torch.zeros(out_channels))

        # This sampling rate describes the upsampled feature map before
        # activation.
        temp_sampling_rate = max(in_sampling_rate, out_sampling_rate)
        temp_sampling_rate = temp_sampling_rate * act_upsampling

        # Design upsampling filter.
        up_factor = int(np.rint(temp_sampling_rate / in_sampling_rate))
        assert in_sampling_rate * up_factor == temp_sampling_rate
        if up_factor > 1:
            self.up_factor = up_factor
            self.up_taps = filter_size * up_factor
        else:
            self.up_factor = 1
            self.up_taps = 1  # No filtering.
        self.register_buffer(
            'up_filter',
            self.design_lowpass_filter(numtaps=self.up_taps,
                                       cutoff=in_cutoff,
                                       width=in_half_width * 2,
                                       fs=temp_sampling_rate,
                                       radial=False))

        # Design downsampling filter.
        down_factor = int(np.rint(temp_sampling_rate / out_sampling_rate))
        assert out_sampling_rate * down_factor == temp_sampling_rate
        if down_factor > 1:
            self.down_factor = down_factor
            self.down_taps = filter_size * down_factor
        else:
            self.down_factor = 1
            self.down_taps = 1  # No filtering.
        self.register_buffer(
            'down_filter',
            self.design_lowpass_filter(numtaps=self.down_taps,
                                       cutoff=out_cutoff,
                                       width=out_half_width * 2,
                                       fs=temp_sampling_rate,
                                       radial=use_radial_filter))

        # Compute padding.
        # Desired output size before downsampling.
        pad_total = (out_size - 1) * self.down_factor + 1
        # Input size after upsampling.
        pad_total = pad_total - (in_size + conv_padding) * self.up_factor
        # Size reduction caused by the filters.
        pad_total = pad_total + self.up_taps + self.down_taps - 2
        # Shift sample locations according to the symmetric interpretation.
        pad_lo = (pad_total + self.up_factor) // 2
        pad_hi = pad_total - pad_lo
        self.padding = list(map(int, (pad_lo, pad_hi, pad_lo, pad_hi)))

    def extra_repr(self):
        return (f'in_size={self.in_size}, '
                f'out_size={self.out_size}, '
                f'in_srate={self.in_sampling_rate}, '
                f'out_srate={self.out_sampling_rate}, '
                f'in_cutoff={self.in_cutoff:.3f}, '
                f'out_cutoff={self.out_cutoff:.3f}, '
                f'in_half_width={self.in_half_width:.3f}, '
                f'out_half_width={self.out_half_width:.3f}, '
                f'up_factor={self.up_factor}, '
                f'up_taps={self.up_taps}, '
                f'down_factor={self.down_factor}, '
                f'down_taps={self.down_taps}, '
                f'filter_size={self.filter_size}, '
                f'radial_filter={self.use_radial_filter}, '
                f'conv_padding={self.conv_padding}, '
                f'act_upsampling={self.act_upsampling}')

    @staticmethod
    def design_lowpass_filter(numtaps, cutoff, width, fs, radial=False):
        """Designs a low-pass filter.

        Args:
            numtaps: Length of the filter (number of coefficients, i.e., the
                filter order + 1).
            cutoff: Cutoff frequency of the output filter.
            width: Width of the transition region.
            fs: Sampling frequency.
            radial: Whether to use radially symmetric jinc-based filter.
                (default: False)
        """
        if numtaps == 1:
            return None

        assert numtaps > 1

        if not radial:  # Separable Kaiser low-pass filter.
            f = scipy.signal.firwin(numtaps=numtaps,
                                    cutoff=cutoff,
                                    width=width,
                                    fs=fs)
        else:  # Radially symmetric jinc-based filter.
            x = (np.arange(numtaps) - (numtaps - 1) / 2) / fs
            r = np.hypot(*np.meshgrid(x, x))
            f = scipy.special.j1(2 * cutoff * (np.pi * r)) / (np.pi * r)
            beta = scipy.signal.kaiser_beta(
                scipy.signal.kaiser_atten(numtaps, width / (fs / 2)))
            w = np.kaiser(numtaps, beta)
            f = f * np.outer(w, w)
            f = f / np.sum(f)
        return torch.as_tensor(f, dtype=torch.float32)

    def forward(self, x, gain, slope, clamp, impl='cuda'):
        dtype = x.dtype

        x = filtered_lrelu.filtered_lrelu(x=x,
                                          fu=self.up_filter,
                                          fd=self.down_filter,
                                          b=self.bias.to(dtype),
                                          up=self.up_factor,
                                          down=self.down_factor,
                                          padding=self.padding,
                                          gain=gain,
                                          slope=slope,
                                          clamp=clamp,
                                          impl=impl)

        assert x.dtype == dtype
        return x


class DenseLayer(nn.Module):
    """Implements the dense layer."""

    def __init__(self,
                 in_channels,
                 out_channels,
                 init_weight_std,
                 add_bias,
                 init_bias,
                 lr_mul,
                 activation_type):
        """Initializes with layer settings.

        Args:
            in_channels: Number of channels of the input tensor.
            out_channels: Number of channels of the output tensor.
            init_weight_std: The initial standard deviation of weight.
            add_bias: Whether to add bias onto the fully-connected result.
            init_bias: The initial bias value before training.
            lr_mul: Learning multiplier for both weight and bias.
            activation_type: Type of activation.
        """
        super().__init__()
        self.in_channels = in_channels
        self.out_channels = out_channels
        self.init_weight_std = init_weight_std
        self.add_bias = add_bias
        self.init_bias = init_bias
        self.lr_mul = lr_mul
        self.activation_type = activation_type

        weight_shape = (out_channels, in_channels)
        self.weight = nn.Parameter(
            torch.randn(*weight_shape) * init_weight_std / lr_mul)
        self.wscale = lr_mul / np.sqrt(in_channels)

        if add_bias:
            init_bias = np.float32(np.float32(init_bias) / lr_mul)
            if isinstance(init_bias, np.float32):
                self.bias = nn.Parameter(torch.full([out_channels], init_bias))
            else:
                assert isinstance(init_bias, np.ndarray)
                self.bias = nn.Parameter(torch.from_numpy(init_bias))
            self.bscale = lr_mul
        else:
            self.bias = None

    def extra_repr(self):
        return (f'in_ch={self.in_channels}, '
                f'out_ch={self.out_channels}, '
                f'init_weight_std={self.init_weight_std}, '
                f'bias={self.add_bias}, '
                f'init_bias={self.init_bias}, '
                f'lr_mul={self.lr_mul:.3f}, '
                f'act={self.activation_type}')

    def forward(self, x, impl='cuda'):
        dtype = x.dtype

        if x.ndim != 2:
            x = x.flatten(start_dim=1)

        weight = self.weight.to(dtype) * self.wscale
        bias = None
        if self.bias is not None:
            bias = self.bias.to(dtype)
            if self.bscale != 1.0:
                bias = bias * self.bscale

        # Fast pass for linear activation.
        if self.activation_type == 'linear' and bias is not None:
            x = torch.addmm(bias.unsqueeze(0), x, weight.t())
        else:
            x = x.matmul(weight.t())
            x = bias_act.bias_act(x, bias, act=self.activation_type, impl=impl)

        assert x.dtype == dtype
        return x

# pylint: enable=missing-function-docstring