File size: 17,350 Bytes
2f85de4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
# python3.7
"""Contains the implementation of generator described in PiGAN."""

import math
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.cuda.amp import autocast

from .utils.ops import all_gather
from .rendering.renderer import Renderer
from .rendering.feature_extractor import FeatureExtractor

__all__ = ['PiGANGenerator']


class PiGANGenerator(nn.Module):
    """Defines the generator network in PiGAN."""
    def __init__(self,
                 # Settings for mapping network.
                 z_dim=256,
                 w_dim=256,
                 repeat_w=False,
                 normalize_z=False,
                 mapping_layers=3,
                 mapping_hidden_dim=256,
                 # Settings for conditional generation.
                 label_dim=0,
                 embedding_dim=512,
                 normalize_embedding=True,
                 normalize_embedding_latent=False,
                 label_concat=True,
                 # Settings for synthesis network.
                 resolution=-1,
                 synthesis_input_dim=3,
                 synthesis_output_dim=256,
                 synthesis_layers=8,
                 grid_scale=0.24,
                 eps=1e-8,
                 # Settings for rendering module.
                 rendering_kwargs={}):
        """Initializes with basic settings."""
        super().__init__()

        self.z_dim = z_dim
        self.w_dim = w_dim
        self.repeat_w = repeat_w
        self.normalize_z = normalize_z
        self.mapping_layers = mapping_layers

        self.latent_dim = (z_dim,)
        self.label_dim = label_dim
        self.embedding_dim = embedding_dim
        self.normalize_embedding = normalize_embedding
        self.normalize_embedding_latent = normalize_embedding_latent

        self.resolution = resolution
        self.num_layers = synthesis_layers
        self.eps = eps

        if self.repeat_w:
            self.mapping_space_dim = self.w_dim
        else:
            self.mapping_space_dim = self.w_dim * (self.num_layers + 1)

        # Mapping Network to tranform latent codes from Z-Space into W-Space.
        self.mapping = MappingNetwork(
            input_dim=z_dim,
            output_dim=w_dim,
            num_outputs=synthesis_layers + 1,
            repeat_output=repeat_w,
            normalize_input=normalize_z,
            num_layers=mapping_layers,
            hidden_dim=mapping_hidden_dim,
            label_dim=label_dim,
            embedding_dim=embedding_dim,
            normalize_embedding=normalize_embedding,
            normalize_embedding_latent=normalize_embedding_latent,
            eps=eps,
            label_concat=label_concat,
            lr=None)

        # Set up the overall renderer.
        self.renderer = Renderer()

        # Set up the reference representation generator.
        self.ref_representation_generator = None

        # Set up the feature extractor.
        self.feature_extractor = FeatureExtractor(ref_mode='none')

        # Set up the  post module in the feature extractor.
        self.post_module = MLPNetwork(w_dim=w_dim,
                                      in_channels=synthesis_input_dim,
                                      num_layers=synthesis_layers,
                                      out_channels=synthesis_output_dim,
                                      grid_scale=grid_scale)

        # Set up the fully-connected layer head.
        self.fc_head = FCHead(w_dim=w_dim,
                              channels=synthesis_output_dim,
                              mlp_length=self.post_module.mlp_length)

        # Set up the post neural renderer.
        self.post_neural_renderer = None

        # This is used for truncation trick.
        if self.repeat_w:
            self.register_buffer('w_avg', torch.zeros(w_dim))
        else:
            self.register_buffer('w_avg', torch.zeros(self.num_layers * w_dim))

        # Set up some rendering related arguments.
        self.rendering_kwargs = rendering_kwargs

        # Initialize weights.
        self.init_weights()

    def init_weights(self):
        self.mapping.init_weights()
        self.post_module.init_weights()
        self.fc_head.init_weights()

    def forward(self,
                z,
                label=None,
                lod=None,
                w_moving_decay=None,
                sync_w_avg=False,
                style_mixing_prob=None,
                noise_std=None,
                trunc_psi=None,
                trunc_layers=None,
                enable_amp=False):
        if noise_std is not None:
            self.rendering_kwargs.update(noise_std=noise_std)

        lod = self.post_module.lod.cpu().tolist() if lod is None else lod

        mapping_results = self.mapping(z, label)
        w = mapping_results['w']
        wp = mapping_results.pop('wp')

        if self.training and w_moving_decay is not None:
            if sync_w_avg:
                batch_w_avg = all_gather(w.detach()).mean(dim=0)
            else:
                batch_w_avg = w.detach().mean(dim=0)
            self.w_avg.copy_(batch_w_avg.lerp(self.w_avg, w_moving_decay))

        # Truncation.
        if not self.training:
            trunc_psi = 1.0 if trunc_psi is None else trunc_psi
            trunc_layers = 0 if trunc_layers is None else trunc_layers
            if trunc_psi < 1.0 and trunc_layers > 0:
                w_avg = self.w_avg.reshape(1, -1, self.w_dim)[:, :trunc_layers]
                wp[:, :trunc_layers] = w_avg.lerp(
                    wp[:, :trunc_layers], trunc_psi)

        with autocast(enabled=enable_amp):
            rendering_result = self.renderer(
                wp=wp,
                feature_extractor=self.feature_extractor,
                rendering_options=self.rendering_kwargs,
                position_encoder=None,
                ref_representation=None,
                post_module=self.post_module,
                post_module_kwargs=dict(lod=lod),
                fc_head=self.fc_head)

        image = rendering_result['composite_rgb'].reshape(
            z.shape[0], self.resolution, self.resolution,
            -1).permute(0, 3, 1, 2)

        camera = torch.cat([
            rendering_result['camera_polar'],
            rendering_result['camera_azimuthal']
        ], -1)

        return {
            **mapping_results,
            'image': image,
            'camera': camera,
            'latent': z
        }


class MappingNetwork(nn.Module):
    """Implements the latent space mapping module.

    Basically, this module executes several dense layers in sequence, and the
    label embedding if needed.
    """

    def __init__(self,
                 input_dim,
                 output_dim,
                 num_outputs,
                 repeat_output,
                 normalize_input,
                 num_layers,
                 hidden_dim,
                 label_dim,
                 embedding_dim,
                 normalize_embedding,
                 normalize_embedding_latent,
                 eps,
                 label_concat,
                 lr=None):
        super().__init__()

        self.input_dim = input_dim
        self.output_dim = output_dim
        self.num_outputs = num_outputs
        self.repeat_output = repeat_output
        self.normalize_input = normalize_input
        self.num_layers = num_layers
        # self.out_channels = out_channels
        # TODO
        # self.lr_mul = lr_mul

        self.label_dim = label_dim
        self.embedding_dim = embedding_dim
        self.normalize_embedding = normalize_embedding
        self.normalize_embedding_latent = normalize_embedding_latent
        self.eps = eps
        self.label_concat = label_concat

        self.norm = PixelNormLayer(dim=1, eps=eps)

        if num_outputs is not None and not repeat_output:
            output_dim = output_dim * num_outputs

        if self.label_dim > 0:
            if self.label_concat:
                input_dim = input_dim + embedding_dim
                self.embedding = EqualLinear(label_dim,
                                            embedding_dim,
                                            bias=True,
                                            bias_init=0,
                                            lr_mul=1)
            else:
                self.embedding = EqualLinear(label_dim,
                                            output_dim,
                                            bias=True,
                                            bias_init=0,
                                            lr_mul=1)

        network = []
        for i in range(num_layers):
            in_channels = (input_dim if i == 0 else hidden_dim)
            out_channels = (output_dim if i == (num_layers - 1) else hidden_dim)
            network.append(nn.Linear(in_channels, out_channels))
            network.append(nn.LeakyReLU(0.2, inplace=True))
        self.network = nn.Sequential(*network)

    def init_weights(self):
        for module in self.network.modules():
            if isinstance(module, nn.Linear):
                nn.init.kaiming_normal_(module.weight,
                                        a=0.2,
                                        mode='fan_in',
                                        nonlinearity='leaky_relu')

    def forward(self, z, label=None):
        if z.ndim != 2 or z.shape[1] != self.input_dim:
            raise ValueError(f'Input latent code should be with shape '
                             f'[batch_size, input_dim], where '
                             f'`input_dim` equals to {self.input_dim}!\n'
                             f'But `{z.shape}` is received!')
        if self.normalize_input:
            z = self.norm(z)
        if self.label_dim > 0:
            if label is None:
                raise ValueError(f'Model requires an additional label '
                                 f'(with dimension {self.label_dim}) as input, '
                                 f'but no label is received!')
            if label.ndim != 2 or label.shape != (z.shape[0], self.label_dim):
                raise ValueError(f'Input label should be with shape '
                                 f'[batch_size, label_dim], where '
                                 f'`batch_size` equals to that of '
                                 f'latent codes ({z.shape[0]}) and '
                                 f'`label_dim` equals to {self.label_dim}!\n'
                                 f'But `{label.shape}` is received!')
            label = label.to(dtype=torch.float32)

            embedding = self.embedding(label)
            if self.normalize_embedding and self.label_concat:
                embedding = self.norm(embedding)
            if self.label_concat:
                w = torch.cat((z, embedding), dim=1)
            else:
                w = z
        else:
            w = z

        if (self.label_dim > 0 and self.normalize_embedding_latent
            and self.label_concat):
            w = self.norm(w)

        for layer in self.network:
            w = layer(w)

        if self.label_dim > 0 and (not self.label_concat):
            w = w * embedding

        wp = None
        if self.num_outputs is not None:
            if self.repeat_output:
                wp = w.unsqueeze(1).repeat((1, self.num_outputs, 1))
            else:
                wp = w.reshape(-1, self.num_outputs, self.output_dim)

        results = {
            'z': z,
            'label': label,
            'w': w,
            'wp': wp,
        }
        if self.label_dim > 0:
            results['embedding'] = embedding
        return results


class MLPNetwork(nn.Module):
    """Defines MLP Network in Pi-GAN."""
    def __init__(self,
                 w_dim,
                 in_channels,
                 num_layers,
                 out_channels,
                 grid_scale=0.24):
        super().__init__()

        self.in_channels = in_channels
        self.w_dim = w_dim
        self.out_channels = out_channels

        self.register_buffer('lod', torch.zeros(()))

        self.grid_warper = UniformBoxWarp(grid_scale)

        network = []
        for i in range(num_layers):
            in_channels = in_channels if i == 0 else out_channels
            out_channels = out_channels
            film = FiLMLayer(in_channels, out_channels, w_dim)
            network.append(film)
        self.mlp_network = nn.Sequential(*network)

        self.mlp_length = len(self.mlp_network)

    def init_weights(self):
        for module in self.modules():
            if isinstance(module, FiLMLayer):
                module.init_weights()

        self.mlp_network[0].init_weights(first=True)

    def forward(self, pts, wp, lod=None):
        num_dims = pts.ndim
        assert num_dims in [3, 4, 5]
        if num_dims == 5:
            N, H, W, K, C = pts.shape
            pts = pts.reshape(N, H * W * K, C)
        elif num_dims == 4:
            N, R, K, C = pts.shape
            pts = pts.reshape(N, R * K, C)

        x = self.grid_warper(pts)

        for idx, layer in enumerate(self.mlp_network):
            x = layer(x, wp[:, idx])

        return x


class FCHead(nn.Module):
    """Defines fully-connected layer head in Pi-GAN to decode `feature` into
    `sigma` and `rgb`."""

    def __init__(self, w_dim, channels, mlp_length):
        super().__init__()

        self.w_dim = w_dim
        self.channels = channels
        self.mlp_length = mlp_length

        self.sigma_head = nn.Linear(channels, 1)
        self.rgb_film = FiLMLayer(channels + 3, channels, w_dim)
        self.rgb_head = nn.Linear(channels, 3)

    def init_weights(self,):
        self.sigma_head.apply(freq_init(25))
        self.rgb_head.apply(freq_init(25))

        self.rgb_film.init_weights()

    def forward(self, point_features, wp, dirs):
        sigma = self.sigma_head(point_features)

        dirs = torch.cat([point_features, dirs], dim=-1)
        rgb = self.rgb_film(dirs, wp[:, self.mlp_length])
        rgb = self.rgb_head(rgb).sigmoid()

        results = {'sigma': sigma, 'rgb': rgb}

        return results


class FiLMLayer(nn.Module):
    def __init__(self, input_dim, output_dim, w_dim, **kwargs):
        super().__init__()
        self.input_dim = input_dim
        self.output_dim = output_dim
        self.w_dim = w_dim

        self.layer = nn.Linear(input_dim, output_dim)
        self.style = nn.Linear(w_dim, output_dim*2)

    def init_weights(self, first=False):
        # initial with 25 frequency
        if not first:
            self.layer.apply(freq_init(25))
        else:
            self.layer.apply(first_film_init)
        # kaiming initial && scale 1/4
        nn.init.kaiming_normal_(self.style.weight,
                                a=0.2,
                                mode='fan_in',
                                nonlinearity='leaky_relu')
        with torch.no_grad(): self.style.weight *= 0.25

    def extra_repr(self):
        return (f'in_ch={self.input_dim}, '
                f'out_ch={self.output_dim}, '
                f'w_ch={self.w_dim}')

    def forward(self, x, wp):
        x = self.layer(x)
        style = self.style(wp)
        style_split = style.unsqueeze(1).chunk(2, dim=2)
        freq = style_split[0]
        # Scale for sin activation
        freq = freq*15 + 30
        phase_shift = style_split[1]
        return torch.sin(freq * x + phase_shift)

class PixelNormLayer(nn.Module):
    """Implements pixel-wise feature vector normalization layer."""

    def __init__(self, dim, eps):
        super().__init__()
        self.dim = dim
        self.eps = eps

    def extra_repr(self):
        return f'dim={self.dim}, epsilon={self.eps}'

    def forward(self, x):
        scale = (x.square().mean(dim=self.dim, keepdim=True) + self.eps).rsqrt()
        return x * scale

class UniformBoxWarp(nn.Module):
    def __init__(self, sidelength):
        super().__init__()
        self.scale_factor = 2 / sidelength

    def forward(self, coordinates):
        return coordinates * self.scale_factor

def first_film_init(m):
    with torch.no_grad():
        if isinstance(m, nn.Linear):
            num_input = m.weight.size(-1)
            m.weight.uniform_(-1/num_input, 1/num_input)

def freq_init(freq):
    def init(m):
        with torch.no_grad():
            if isinstance(m, nn.Linear):
                num_input = m.weight.size(-1)
                m.weight.uniform_(-np.sqrt(6/num_input)/freq,
                                  np.sqrt(6/num_input)/freq)
    return init

class EqualLinear(nn.Module):
    def __init__(
        self, in_dim, out_dim, bias=True, bias_init=0, lr_mul=1,
    ):
        super().__init__()

        self.weight = nn.Parameter(torch.randn(out_dim, in_dim).div_(lr_mul))

        if bias:
            self.bias = nn.Parameter(torch.zeros(out_dim).fill_(bias_init))

        else:
            self.bias = None

        self.scale = (1 / math.sqrt(in_dim)) * lr_mul
        self.lr_mul = lr_mul

    def forward(self, input):
        out = F.linear(
                input, self.weight * self.scale, bias=self.bias * self.lr_mul
            )
        return out

    def __repr__(self):
        return (
            f'{self.__class__.__name__}({self.weight.shape[1]}, {self.weight.shape[0]})'
        )