File size: 45,886 Bytes
2f85de4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 |
# python3.7
"""Contains the functions to sample points in 3D space."""
import numpy as np
import torch
import torch.nn.functional as F
__all__ = [
'PointSampler'
]
_POINT_SAMPLING_STRATEGIES = [
'uniform', 'normal', 'ray_dependent', 'point_dependent'
]
_POINT_PERTURBING_STRATEGIES = [
'no', 'middle_uniform', 'uniform', 'self_uniform'
]
_TENSOR_SAMPLING_STRATEGIES = [
'fix', 'uniform', 'normal', 'hybrid', 'truncated_normal'
]
class PointSampler(torch.nn.Module):
"""Defines the class to help sample points.
This class implements the `forward()` function for point sampling, which
includes the following steps:
1. Sample rays in the camera coordinate system.
2. Sample points on each ray.
3. Perturb points on each ray.
4. Sample camera extrinsics.
5. Transform points to the world coordinate system.
"""
def __init__(self,
num_points=16,
fov=30,
image_boundary_value=1.0,
cam_look_at_dir=-1,
pixel_center=False,
y_descending=True,
# Point sampling (i.e., radial distance w.r.t. camera) related.
sampling_strategy='uniform',
focal=None,
dis_min=None,
dis_max=None,
dis_mean=None,
dis_stddev=None,
per_ray_ref=None,
per_point_ref=None,
perturbation_strategy='middle_uniform',
# Camera sampling related.
radius_strategy='fix',
radius_fix=None,
radius_min=None,
radius_max=None,
radius_mean=None,
radius_stddev=None,
polar_strategy='uniform',
polar_fix=None,
polar_min=None,
polar_max=None,
polar_mean=None,
polar_stddev=None,
azimuthal_strategy='uniform',
azimuthal_fix=None,
azimuthal_min=None,
azimuthal_max=None,
azimuthal_mean=None,
azimuthal_stddev=None,
use_spherical_uniform_position=False,
pitch_strategy='fix',
pitch_fix=0,
pitch_min=None,
pitch_max=None,
pitch_mean=None,
pitch_stddev=None,
yaw_strategy='fix',
yaw_fix=0,
yaw_min=None,
yaw_max=None,
yaw_mean=None,
yaw_stddev=None,
roll_strategy='fix',
roll_fix=0,
roll_min=None,
roll_max=None,
roll_mean=None,
roll_stddev=None):
"""Initializes hyper-parameters for point sampling.
Detailed description of each argument can be found in functions
`get_ray_per_pixel()`, `sample_points_per_ray()`,
`perturb_points_per_ray()`, `sample_camera_extrinsics()`.
"""
super().__init__()
self.num_points = num_points
self.fov = fov
self.image_boundary_value = image_boundary_value
self.cam_look_at_dir = cam_look_at_dir
self.pixel_center = pixel_center
self.y_descending = y_descending
self.sampling_strategy = sampling_strategy
self.dis_min = dis_min
self.dis_max = dis_max
self.dis_mean = dis_mean
self.dis_stddev = dis_stddev
self.per_ray_ref = per_ray_ref
self.per_point_ref = per_point_ref
self.perturbation_strategy = perturbation_strategy
self.radius_strategy = radius_strategy
self.radius_fix = radius_fix
self.radius_min = radius_min
self.radius_max = radius_max
self.radius_mean = radius_mean
self.radius_stddev = radius_stddev
self.polar_strategy = polar_strategy
self.polar_fix = polar_fix
self.polar_min = polar_min
self.polar_max = polar_max
self.polar_mean = polar_mean
self.polar_stddev = polar_stddev
self.azimuthal_strategy = azimuthal_strategy
self.azimuthal_fix = azimuthal_fix
self.azimuthal_min = azimuthal_min
self.azimuthal_max = azimuthal_max
self.azimuthal_mean = azimuthal_mean
self.azimuthal_stddev = azimuthal_stddev
self.use_spherical_uniform_position = use_spherical_uniform_position
self.pitch_strategy = pitch_strategy
self.pitch_fix = pitch_fix
self.pitch_min = pitch_min
self.pitch_max = pitch_max
self.pitch_mean = pitch_mean
self.pitch_stddev = pitch_stddev
self.yaw_strategy = yaw_strategy
self.yaw_fix = yaw_fix
self.yaw_min = yaw_min
self.yaw_max = yaw_max
self.yaw_mean = yaw_mean
self.yaw_stddev = yaw_stddev
self.roll_strategy = roll_strategy
self.roll_fix = roll_fix
self.roll_min = roll_min
self.roll_max = roll_max
self.roll_mean = roll_mean
self.roll_stddev = roll_stddev
self.focal = focal
def forward(self,
batch_size,
image_size,
focal=None,
cam2world_matrix=None,
**kwargs):
"""Samples points.
`K` denotes the number of points on each ray.
Args:
batch_size: Batch size of images. Denoted as `N`.
image_size: Size of the image. One element indicates square image,
while two elements stand for height and width respectively.
Denoted as `H` and `W`.
**kwargs: Additional keyword arguments to override the variables
initialized in `__init__()`.
Returns:
A dictionary, containing
- `camera_radius`: camera radius w.r.t. the world coordinate
system, with shape [N].
- `camera_polar`: camera polar w.r.t. the world coordinate
system, with shape [N].
- `camera_azimuthal`: camera azimuthal w.r.t. the world
coordinate system, with shape [N].
- `camera_pitch`: camera pitch w.r.t. the camera coordinate
system, with shape [N].
- `camera_yaw`: camera yaw w.r.t. the camera coordinate system,
with shape [N].
- `camera_roll`: camera roll w.r.t. the camera coordinate
system, with shape [N].
- `camera_pos`: camera position, i.e., the (x, y, z) coordinate
in the world coordinate system, with shape [N, 3].
- `cam2world_matrix`: transformation matrix to transform the
camera coordinate system to the world coordinate system,
with shape [N, 4, 4].
- `rays_camera`: ray directions in the camera coordinate system,
with shape [N, H, W, 3].
- `rays_world`: ray directions in the world coordinate system,
with shape [N, H, W, 3].
- `radii_raw`: raw per-point radial distance w.r.t. the camera
position, with shape [N, H, W, K].
- `radii`: per-point radial distance after perturbation w.r.t.
the camera position, with shape [N, H, W, K].
- `points_camera`: per-point coordinate in the camera coordinate
system, with shape [N, H, W, K, 3].
- `points_world`: per-point coordinate in the world coordinate
system, with shape [N, H, W, K, 3].
"""
num_points = kwargs.get('num_points', self.num_points)
fov = kwargs.get('fov', self.fov)
image_boundary_value = kwargs.get(
'image_boundary_value', self.image_boundary_value)
cam_look_at_dir = kwargs.get('cam_look_at_dir', self.cam_look_at_dir)
pixel_center = kwargs.get('pixel_center', self.pixel_center)
y_descending = kwargs.get('y_descending', self.y_descending)
sampling_strategy = kwargs.get(
'sampling_strategy', self.sampling_strategy)
dis_min = kwargs.get('dis_min', self.dis_min)
dis_max = kwargs.get('dis_max', self.dis_max)
dis_mean = kwargs.get('dis_mean', self.dis_mean)
dis_stddev = kwargs.get('dis_stddev', self.dis_stddev)
per_ray_ref = kwargs.get('per_ray_ref', self.per_ray_ref)
per_point_ref = kwargs.get('per_point_ref', self.per_point_ref)
perturbation_strategy = kwargs.get(
'perturbation_strategy', self.perturbation_strategy)
radius_strategy = kwargs.get('radius_strategy', self.radius_strategy)
radius_fix = kwargs.get('radius_fix', self.radius_fix)
radius_min = kwargs.get('radius_min', self.radius_min)
radius_max = kwargs.get('radius_max', self.radius_max)
radius_mean = kwargs.get('radius_mean', self.radius_mean)
radius_stddev = kwargs.get('radius_stddev', self.radius_stddev)
polar_strategy = kwargs.get('polar_strategy', self.polar_strategy)
polar_fix = kwargs.get('polar_fix', self.polar_fix)
polar_min = kwargs.get('polar_min', self.polar_min)
polar_max = kwargs.get('polar_max', self.polar_max)
polar_mean = kwargs.get('polar_mean', self.polar_mean)
polar_stddev = kwargs.get('polar_stddev', self.polar_stddev)
azimuthal_strategy = kwargs.get(
'azimuthal_strategy', self.azimuthal_strategy)
azimuthal_fix = kwargs.get('azimuthal_fix', self.azimuthal_fix)
azimuthal_min = kwargs.get('azimuthal_min', self.azimuthal_min)
azimuthal_max = kwargs.get('azimuthal_max', self.azimuthal_max)
azimuthal_mean = kwargs.get('azimuthal_mean', self.azimuthal_mean)
azimuthal_stddev = kwargs.get('azimuthal_stddev', self.azimuthal_stddev)
use_spherical_uniform_position = kwargs.get(
'use_spherical_uniform_position',
self.use_spherical_uniform_position)
pitch_strategy = kwargs.get('pitch_strategy', self.pitch_strategy)
pitch_fix = kwargs.get('pitch_fix', self.pitch_fix)
pitch_min = kwargs.get('pitch_min', self.pitch_min)
pitch_max = kwargs.get('pitch_max', self.pitch_max)
pitch_mean = kwargs.get('pitch_mean', self.pitch_mean)
pitch_stddev = kwargs.get('pitch_stddev', self.pitch_stddev)
yaw_strategy = kwargs.get('yaw_strategy', self.yaw_strategy)
yaw_fix = kwargs.get('yaw_fix', self.yaw_fix)
yaw_min = kwargs.get('yaw_min', self.yaw_min)
yaw_max = kwargs.get('yaw_max', self.yaw_max)
yaw_mean = kwargs.get('yaw_mean', self.yaw_mean)
yaw_stddev = kwargs.get('yaw_stddev', self.yaw_stddev)
roll_strategy = kwargs.get('roll_strategy', self.roll_strategy)
roll_fix = kwargs.get('roll_fix', self.roll_fix)
roll_min = kwargs.get('roll_min', self.roll_min)
roll_max = kwargs.get('roll_max', self.roll_max)
roll_mean = kwargs.get('roll_mean', self.roll_mean)
roll_stddev = kwargs.get('roll_stddev', self.roll_stddev)
rays_camera = get_ray_per_pixel(batch_size=batch_size,
image_size=image_size,
fov=fov,
boundary=image_boundary_value,
focal=focal,
cam_look_at_dir=cam_look_at_dir,
pixel_center=pixel_center,
y_descending=y_descending)
radii_raw = sample_points_per_ray(batch_size=batch_size,
image_size=image_size,
num_points=num_points,
strategy=sampling_strategy,
dis_min=dis_min,
dis_max=dis_max,
dis_mean=dis_mean,
dis_stddev=dis_stddev,
per_ray_ref=per_ray_ref,
per_point_ref=per_point_ref)
radii = perturb_points_per_ray(radii=radii_raw,
strategy=perturbation_strategy)
camera_info = {}
if cam2world_matrix is not None:
camera_info.update(dict(
cam2world_matrix=cam2world_matrix,
radius=None,
polar=None,
azimuthal=None,
pitch=None,
yaw=None,
roll=None,
camera_pos=None,
))
else:
camera_info = sample_camera_extrinsics(
batch_size=batch_size,
radius_strategy=radius_strategy,
radius_fix=radius_fix,
radius_min=radius_min,
radius_max=radius_max,
radius_mean=radius_mean,
radius_stddev=radius_stddev,
polar_strategy=polar_strategy,
polar_fix=polar_fix,
polar_min=polar_min,
polar_max=polar_max,
polar_mean=polar_mean,
polar_stddev=polar_stddev,
azimuthal_strategy=azimuthal_strategy,
azimuthal_fix=azimuthal_fix,
azimuthal_min=azimuthal_min,
azimuthal_max=azimuthal_max,
azimuthal_mean=azimuthal_mean,
azimuthal_stddev=azimuthal_stddev,
use_spherical_uniform_position=use_spherical_uniform_position,
pitch_strategy=pitch_strategy,
pitch_fix=pitch_fix,
pitch_min=pitch_min,
pitch_max=pitch_max,
pitch_mean=pitch_mean,
pitch_stddev=pitch_stddev,
yaw_strategy=yaw_strategy,
yaw_fix=yaw_fix,
yaw_min=yaw_min,
yaw_max=yaw_max,
yaw_mean=yaw_mean,
yaw_stddev=yaw_stddev,
roll_strategy=roll_strategy,
roll_fix=roll_fix,
roll_min=roll_min,
roll_max=roll_max,
roll_mean=roll_mean,
roll_stddev=roll_stddev)
points = get_point_coord(
rays_camera=rays_camera,
radii=radii,
cam2world_matrix=camera_info['cam2world_matrix'])
return {
'camera_radius': camera_info['radius'], # [N]
'camera_polar': camera_info['polar'], # [N]
'camera_azimuthal': camera_info['azimuthal'], # [N]
'camera_pitch': camera_info['pitch'], # [N]
'camera_yaw': camera_info['yaw'], # [N]
'camera_roll': camera_info['roll'], # [N]
'camera_pos':camera_info['camera_pos'], # [N, 3]
'cam2world_matrix': camera_info['cam2world_matrix'], # [N, 4, 4]
'rays_camera': rays_camera, # [N, H, W, 3]
'rays_world': points['rays_world'], # [N, H, W, 3]
'ray_origins_world': points['ray_origins_world'], # [N, H, W, 3]
'radii_raw': radii_raw, # [N, H, W, K]
'radii': radii, # [N, H, W, K]
'points_camera': points['points_camera'], # [N, H, W, K, 3]
'points_world': points['points_world'] # [N, H, W, K, 3]
}
def get_ray_per_pixel(batch_size,
image_size,
fov,
boundary=1.0,
focal=None,
cam_look_at_dir=-1,
pixel_center=False,
y_descending=True):
"""Gets ray direction for each image pixel under camera coordinate system.
Each ray direction is represent by a vector, [x, y, z], under the following
coordinate system:
- The origin is set at the camera position.
- The X axis is set as the horizontal direction of the image plane, with
larger value on the right.
- The Y axis is set as the vertical direction of the image plane, with
larger value on the top.
- The Z axis is set as the direction perpendicular to the image plane,
from the image center pointing to the camera. In other words, the z
coordinate of the image plane is negative.
- The above coordinate system is a right-hand one.
Taking a 5x5 image (with boundary 1.0) as an instance, the per-pixel (x, y)
coordinates should look like:
(-1.0, 1.0) (-0.5, 1.0) (0.0, 1.0) (0.5, 1.0) (1.0, 1.0)
(-1.0, 0.5) (-0.5, 0.5) (0.0, 0.5) (0.5, 0.5) (1.0, 0.5)
(-1.0, 0.0) (-0.5, 0.0) (0.0, 0.0) (0.5, 0.0) (1.0, 0.0)
(-1.0, -0.5) (-0.5, -0.5) (0.0, -0.5) (0.5, -0.5) (1.0, -0.5)
(-1.0, -1.0) (-0.5, -1.0) (0.0, -1.0) (0.5, -1.0) (1.0, -1.0)
NOTE:
The X-axis focal and Y-axis focal are assumed to be the same according
to the pinhole camera model.
Args:
batch_size: Batch size of images, each of which has the same ray
directions. Denoted as `N`.
image_size: Size of the image. One element indicates square image, while
two elements stand for height and width respectively. Denoted as `H`
and `W`.
fov: Field of view (along X axis) of the camera, in unit of degree.
boundary: The maximum value of the X coordinate. Defaults to `1.0`.
focal (optional): Focal Length of camera. If given, it will cover the
focal calculated by `fov`. Note that the focal is a normalized one
which is divided by size of the image.
cam_look_at_dir: Direction of camera looks at. Defaults to `-1`, which
means camera looks at `-z` direction.
pixel_center: Whether rays originate from the pixel center or not. For
example, assume a pixel is at (H, W). If `pixel_center` is set
`True`, then the ray originate from (H+0.5, W+0.5), otherwise it
originate from (H, W).
y_descending: Whether the Y axis is in descending order from top to
bottom. If set `True`, the coordinates are the same as the above
example. If set `False`, the coordinate system is consistent with
2D image plane coordinate system, where Y axis is in ascending
order. Defaults to `True`.
Returns:
A tensor, with shape [N, H, W, 3], representing the per-pixel ray
direction. Each direction is normalized to a unit vector.
"""
# Check inputs.
assert isinstance(batch_size, int) and batch_size > 0
N = batch_size
assert isinstance(image_size, (int, list, tuple))
if isinstance(image_size, int):
H = image_size
W = image_size
else:
H, W = image_size
assert isinstance(H, int) and H > 0
assert isinstance(W, int) and W > 0
assert 0 < fov < 180
assert boundary > 0
# Get running device.
device = torch.cuda.current_device() if torch.cuda.is_available() else 'cpu'
# Get (x, y) grid by boundary.
max_x = boundary
max_y = boundary / W * H
if pixel_center:
y, x = torch.meshgrid(
torch.linspace(max_y - 0.5 / H, -max_y + 0.5 / H, H,
device=device),
torch.linspace(-max_x + 0.5 / W, max_x - 0.5 / W, W,
device=device))
else:
y, x = torch.meshgrid(torch.linspace(max_y, -max_y, H, device=device),
torch.linspace(-max_x, max_x, W, device=device))
# Get z coordinate of the image plane by focal (i.e., FOV).
if not y_descending:
y = -y
if focal is None:
focal = boundary / np.tan((2 * np.pi * fov / 360) / 2)
z = np.sign(cam_look_at_dir) * focal * torch.ones_like(x) # [H, W]
# Normalize directions to unit vectors.
rays = F.normalize(torch.stack([x, y, z], dim=-1), dim=-1) # [H, W, 3]
return rays.unsqueeze(0).repeat(N, 1, 1, 1) # [N, H, W, 3]
def sample_points_per_ray(batch_size,
image_size,
num_points,
strategy='uniform',
dis_min=None,
dis_max=None,
dis_mean=None,
dis_stddev=None,
per_ray_ref=None,
per_point_ref=None):
"""Samples per-point radial distance on each ray.
This function is independent of ray directions, hence, each point is
represent by a number, indicating its radial distance to the origin (i.e.,
the camera).
The following sampling strategies are supported:
- `uniform`:
For each ray, the points uniformly locate in range `[dis_min, dis_max]`.
- `normal`:
For each ray, the points are sampled subject to
`Gaussian(dis_mean, dis_stddev^2)`.
- `ray_dependent`:
Each ray follows a separate strategy, controlled by `per_ray_ref`.
- `point_dependent`:
Each point follows a separate strategy, controlled by `per_point_ref`.
Args:
batch_size: Batch size of images, for which points are sampled
independently. Denoted as `N`.
image_size: Size of the image. One element indicates square image, while
two elements stand for height and width respectively. Denoted as `H`
and `W`.
num_points: Number of points sampled on each ray. Denoted as `K`.
strategy: Strategy for point sampling. Defaults to `uniform`.
dis_min: Minimum radial distance (with camera as the origin) for each
point. Defaults to `None`.
dis_max: Maximum radial distance (with camera as the origin) for each
point. Defaults to `None`.
dis_mean: Mean radial distance (with camera as the origin) for each
point. Defaults to `None`.
dis_stddev: Standard deviation of the radial distance (with camera as
the origin) for each point. Defaults to `None`.
per_ray_ref: Reference for each ray, which will guide the sampling
process. Shape [N, H, W, c] is expected, where `c` is the dimension
of a single reference. Defaults to `None`.
per_point_ref: Reference for each point, which will guide the sampling
process. Shape [N, H, W, K, c] is expected, where `c` is the
dimension of a single reference. Defaults to `None`.
Returns:
A tensor, with shape [N, H, W, K], representing the per-point radial
distance on each ray. All numbers should be positive, and the
distances on each ray should follow a non-descending order.
Raises:
ValueError: If the sampling strategy is not supported.
NotImplementedError: If the sampling strategy is not implemented.
"""
# Check inputs.
assert isinstance(batch_size, int) and batch_size > 0
N = batch_size
assert isinstance(image_size, (int, list, tuple))
if isinstance(image_size, int):
H = image_size
W = image_size
else:
H, W = image_size
assert isinstance(H, int) and H > 0
assert isinstance(W, int) and W > 0
assert isinstance(num_points, int) and num_points > 0
K = num_points
strategy = strategy.lower()
if strategy not in _POINT_SAMPLING_STRATEGIES:
raise ValueError(f'Invalid point sampling strategy: `{strategy}`!\n'
f'Strategies allowed: {_POINT_SAMPLING_STRATEGIES}.')
# Get running device.
device = torch.cuda.current_device() if torch.cuda.is_available() else 'cpu'
# Sample points according to strategy.
if strategy == 'uniform':
assert dis_max >= dis_min > 0
radii = torch.linspace(dis_min, dis_max, K, device=device) # [K]
return radii.reshape(1, 1, 1, K).repeat(N, H, W, 1) # [N, H, W, K]
if strategy == 'normal':
# TODO: Should we support the normal sampling strategy?
assert dis_mean > 0 and dis_stddev >= 0
if strategy == 'ray_dependent':
# TODO: Strategy dependent on depth?
assert per_ray_ref.ndim == 4
assert per_ray_ref.shape[:3] == (N, H, W)
if strategy == 'point_dependent':
# TODO: This is hierarchical sampling?
assert per_point_ref.ndim == 5
assert per_point_ref.shape[:4] == (N, H, W, K)
raise NotImplementedError(f'Not implemented point sampling strategy: '
f'`{strategy}`!')
def perturb_points_per_ray(radii, strategy='middle_uniform'):
# Stratified sampling approach described in original NeRF paper.
"""Perturbs point radii within their local range on each ray.
`N`, `H`, `W`, `K` denote batch size, image height, image width, number of
points per ray, respectively.
The following perturbing strategies are supported:
- `no`:
Disable point perturbation.
- `middle_uniform`:
For each point, it is perturbed between two midpoints. One locates
within the point itself and its previous one on the same ray, while the
other locates within the point itself and its next one on the same ray.
- `uniform`:
For each point, it is perturbed between itself and its next one.
For example, there are `n+1` points on the ray: [x_0, x_1, ..., x_n].
Then the perturbed points are [x_0', x_1', ..., x_n'] with distribution
xi' ~ U(x_i, x_i+1), where x_n+1 = x_n + (x_n - x_n-1).
- `self_uniform`:
For each point, it is perturbed around itself.For example, there are
`n+1` points on the ray: [x_0, x_1, ..., x_n]. Then the perturbed points
are [x_0', x_1', ..., x_n'] with distribution
xi' ~ U(x_i - 0.5, x_i+1 - 0.5).
Args:
radii: A collection of point radii, with shape [N, H, W, K].
strategy: Strategy to perturb each point. Defaults to `middle_uniform`.
Returns:
A tensor, with shape [N, H, W, K], representing the per-point radial
distance on each ray. All numbers should be positive, and the
distances on each ray should follow a non-descending order.
Raises:
ValueError: If the input point radii are with invalid shape, or the
perturbing strategy is not supported.
NotImplementedError: If the perturbing strategy is not implemented.
"""
# Check inputs.
if radii.ndim != 4:
raise ValueError(f'The input point radii should be with shape '
f'[batch_size, height, width, num_points], '
f'but `{radii.shape}` is received!')
strategy = strategy.lower()
if strategy not in _POINT_PERTURBING_STRATEGIES:
raise ValueError(f'Invalid point perturbing strategy: `{strategy}`!\n'
f'Strategies allowed: {_POINT_PERTURBING_STRATEGIES}.')
if strategy == 'no':
return radii
if strategy == 'middle_uniform':
# Get midpoints.
midpoint = (radii[..., 1:] + radii[..., :-1]) / 2 # [N, H, W, K-1]
# Get intervals.
left = torch.cat([radii[..., :1], midpoint], dim=-1) # [N, H, W, K]
right = torch.cat([midpoint, radii[..., -1:]], dim=-1) # [N, H, W, K]
# Uniformly sample within each interval.
t = torch.rand_like(radii) # [N, H, W, K]
return left + (right - left) * t # [N, H, W, K]
elif strategy == 'uniform':
delta = radii[..., 1:2] - radii[..., 0:1] # [N, H, W, 1]
t = torch.rand_like(radii) # [N, H, W, K]
return radii + t * delta # [N, H, W, K]
elif strategy == 'self_uniform':
delta = radii[..., 1:2] - radii[..., 0:1] # [N, H, W, 1]
t = torch.rand_like(radii) - 0.5 # [N, H, W, K]
return radii + t * delta # [N, H, W, K]
raise NotImplementedError(f'Not implemented point perturbing strategy: '
f'`{strategy}`!')
def sample_tensor(size,
strategy='uniform',
entry_fix=None,
entry_min=None,
entry_max=None,
entry_mean=None,
entry_stddev=None):
"""Samples a tensor according to specified strategy.
The following sampling strategies are supported:
- `fix`:
Each entry is fixed as `entry_fix`.
- `uniform`:
Each entry is uniformly sampled from range `[entry_min, entry_max]`.
- `normal`:
Each entry is sampled subject to `Gaussian(entry_mean, entry_stddev^2)`.
- `hybrid`:
Each entry is 50% sampled with `uniform` and 50% sampled with `normal`.
- `truncated_normal`:
Each entry is sampled subject to a truncated normal distribution, with
`entry_min` and `entry_max` as the cut-off values.
Args:
size: Size of the sampled tensor. This field is expected to be an
integer, a list, or a tuple.
strategy: Strategy to sample points. Defaults to `uniform`.
entry_min: Minimum value of each entry. Defaults to `None`.
entry_max: Maximum value of each entry. Defaults to `None`.
entry_mean: Mean value of each entry. Defaults to `None`.
entry_stddev: Standard deviation of each entry. Defaults to `None`.
Returns:
A tensor, with expected size.
Raises:
ValueError: If the sampling strategy is not supported.
NotImplementedError: If the sampling strategy is not implemented.
"""
# Check inputs.
if isinstance(size, int):
size = (size,)
elif isinstance(size, list):
size = tuple(size)
assert isinstance(size, tuple)
strategy = strategy.lower()
if strategy not in _TENSOR_SAMPLING_STRATEGIES:
raise ValueError(f'Invalid tensor sampling strategy: `{strategy}`!\n'
f'Strategies allowed: {_TENSOR_SAMPLING_STRATEGIES}.')
# Get running device.
device = torch.cuda.current_device() if torch.cuda.is_available() else 'cpu'
if strategy == 'fix':
assert entry_fix is not None
return torch.ones(size, device=device) * entry_fix
if strategy == 'uniform':
assert entry_max >= entry_min
t = torch.rand(size, device=device)
return entry_min + (entry_max - entry_min) * t
if strategy == 'normal':
assert entry_mean is not None and entry_stddev >= 0
return torch.randn(size, device=device) * entry_stddev + entry_mean
if strategy == 'hybrid':
assert entry_max >= entry_min
assert entry_mean is not None and entry_stddev >= 0
if np.random.random() < 0.5:
t = torch.rand(size, device=device)
return entry_min + (entry_max - entry_min) * t
return torch.randn(size, device=device) * entry_stddev + entry_mean
if strategy == 'truncated_normal':
# TODO: Truncated normal distribution differs from cut-off.
assert entry_max >= entry_min
assert entry_mean is not None and entry_stddev >= 0
tensor = torch.randn(size, device=device) * entry_stddev + entry_mean
tensor = torch.clamp(tensor, entry_min, entry_max)
return tensor
raise NotImplementedError(f'Not implemented tensor sampling strategy: '
f'`{strategy}`!')
def sample_camera_extrinsics(batch_size,
radius_strategy='fix',
radius_fix=None,
radius_min=None,
radius_max=None,
radius_mean=None,
radius_stddev=None,
polar_strategy='uniform',
polar_fix=None,
polar_min=None,
polar_max=None,
polar_mean=None,
polar_stddev=None,
azimuthal_strategy='uniform',
azimuthal_fix=None,
azimuthal_min=None,
azimuthal_max=None,
azimuthal_mean=None,
azimuthal_stddev=None,
use_spherical_uniform_position=False,
pitch_strategy='fix',
pitch_fix=0,
pitch_min=None,
pitch_max=None,
pitch_mean=None,
pitch_stddev=None,
yaw_strategy='fix',
yaw_fix=0,
yaw_min=None,
yaw_max=None,
yaw_mean=None,
yaw_stddev=None,
roll_strategy='fix',
roll_fix=0,
roll_min=None,
roll_max=None,
roll_mean=None,
roll_stddev=None):
"""Samples camera extrinsics.
This function supports sampling camera extrinsics from 6 dimensions (here,
all angles are in unit of radian):
- Camera position:
- radius: Distance from the camera position to the origin of the world
coordinate system.
- polar: The polar angle with respect to the origin of the world
coordinate system.
- azimuthal: The azimuthal angle with respect to the origin of the world
coordinate system.
- Camera orientation:
- pitch: Pitch angle (X axis) regarding the camera coordinate system.
- yaw: Yaw angle (Y axis) regarding the camera coordinate system.
- roll: Roll angle (Z axis) regarding the camera coordinate system.
and then convert the camera extrinsics to camera position and coordinate
transformation matrix.
More details about sampling as well as arguments can be found in function
`sample_tensor()`.
NOTE:
Without camera orientation (i.e., `pitch = 0, yaw = 0, roll = 0`), this
function assumes the camera pointing to the origin of the world
coordinate system. Furthermore, camera orientation controls the rotation
within the camera coordinate system, which is independent from the
transformation across coordinate systems. As a result, the camera does
not necessarily point to the origin of the world coordinate system
anymore.
Args:
batch_size: Batch size of the sampled camera. Denoted as `N`.
use_spherical_uniform_position: Whether to sample the camera position
subject to a spherical uniform distribution. Defaults to False.
Returns:
A dictionary, containing
- `camera_radius`: camera radius w.r.t. the world coordinate system,
with shape [N].
- `camera_polar`: camera polar w.r.t. the world coordinate system,
with shape [N].
- `camera_azimuthal`: camera azimuthal w.r.t. the world coordinate
system, with shape [N].
- `camera_pitch`: camera pitch w.r.t. the camera coordinate system,
with shape [N].
- `camera_yaw`: camera yaw w.r.t. the camera coordinate system,
with shape [N].
- `camera_roll`: camera roll w.r.t. the camera coordinate system,
with shape [N].
- `camera_pos`: camera position, i.e., the (x, y, z) coordinate
in the world coordinate system, with shape [N, 3].
- `cam2world_matrix`: transformation matrix to transform the camera
coordinate system to the world coordinate system, with shape
[N, 4, 4].
"""
# Sample camera position.
radius = sample_tensor(size=batch_size,
strategy=radius_strategy,
entry_fix=radius_fix,
entry_min=radius_min,
entry_max=radius_max,
entry_mean=radius_mean,
entry_stddev=radius_stddev)
if use_spherical_uniform_position:
# TODO: Check the local spherical uniform distribution?
polar = sample_tensor(size=batch_size,
strategy='uniform',
entry_fix=polar_fix,
entry_min=polar_min,
entry_max=polar_max,
entry_mean=polar_mean,
entry_stddev=polar_stddev)
azimuthal_cos_val = sample_tensor(size=batch_size,
strategy='uniform',
entry_min=azimuthal_min / np.pi,
entry_max=azimuthal_max / np.pi)
azimuthal = torch.arccos(1 - 2 * azimuthal_cos_val)
else:
polar = sample_tensor(size=batch_size,
strategy=polar_strategy,
entry_fix=polar_fix,
entry_min=polar_min,
entry_max=polar_max,
entry_mean=polar_mean,
entry_stddev=polar_stddev)
azimuthal = sample_tensor(size=batch_size,
strategy=azimuthal_strategy,
entry_fix=azimuthal_fix,
entry_min=azimuthal_min,
entry_max=azimuthal_max,
entry_mean=azimuthal_mean,
entry_stddev=azimuthal_stddev)
# Sample camera orientation.
pitch = sample_tensor(size=batch_size,
strategy=pitch_strategy,
entry_fix=pitch_fix,
entry_min=pitch_min,
entry_max=pitch_max,
entry_mean=pitch_mean,
entry_stddev=pitch_stddev)
yaw = sample_tensor(size=batch_size,
strategy=yaw_strategy,
entry_fix=yaw_fix,
entry_min=yaw_min,
entry_max=yaw_max,
entry_mean=yaw_mean,
entry_stddev=yaw_stddev)
roll = sample_tensor(size=batch_size,
strategy=roll_strategy,
entry_fix=roll_fix,
entry_min=roll_min,
entry_max=roll_max,
entry_mean=roll_mean,
entry_stddev=roll_stddev)
# Get running device.
device = torch.cuda.current_device() if torch.cuda.is_available() else 'cpu'
# Get camera position.
N = batch_size
camera_pos = torch.zeros((N, 3), device=device)
camera_pos[:, 0] = radius * torch.sin(polar) * torch.cos(azimuthal)
camera_pos[:, 1] = radius * torch.cos(polar)
camera_pos[:, 2] = radius * torch.sin(polar) * torch.sin(azimuthal)
# Get transformation matrix with the following steps.
# 1. Use pitch, yaw, and roll to get the rotation matrix within the camera
# coordinate system.
# 2. Get the forward axis, which points from the camper position to the
# origin of the world coordinate system.
# 3. Get a "pseudo" up axis, which is [0, 1, 0].
# 4. Get the left axis by crossing the "pseudo" up axis with the forward
# axis.
# 5. Get the "actual" up axis by crossing the forward axis with the left
# axis.
# 6. Get the camera-to-world rotation matrix with the aforementioned
# forward axis, left axis, and "actual" up axis.
# 7. Get the camera-to-world transformation matrix.
pitch_matrix = torch.eye(4, device=device).unsqueeze(0).repeat(N, 1, 1)
pitch_matrix[:, 1, 1] = torch.cos(pitch)
pitch_matrix[:, 2, 2] = torch.cos(pitch)
pitch_matrix[:, 1, 2] = -torch.sin(pitch)
pitch_matrix[:, 2, 1] = torch.sin(pitch) # [N, 4, 4]
yaw_matrix = torch.eye(4, device=device).unsqueeze(0).repeat(N, 1, 1)
yaw_matrix[:, 0, 0] = torch.cos(yaw)
yaw_matrix[:, 2, 2] = torch.cos(yaw)
yaw_matrix[:, 2, 0] = -torch.sin(yaw)
yaw_matrix[:, 0, 2] = torch.sin(yaw) # [N, 4, 4]
roll_matrix = torch.eye(4, device=device).unsqueeze(0).repeat(N, 1, 1)
roll_matrix[:, 0, 0] = torch.cos(roll)
roll_matrix[:, 1, 1] = torch.cos(roll)
roll_matrix[:, 0, 1] = -torch.sin(roll)
roll_matrix[:, 1, 0] = torch.sin(roll) # [N, 4, 4]
forward_axis = F.normalize(camera_pos * -1, dim=-1) # [N, 3]
pseudo_up_axis = torch.as_tensor([0.0, 1.0, 0.0], device=device) # [3]
pseudo_up_axis = pseudo_up_axis.reshape(1, 3).repeat(N, 1) # [N, 3]
left_axis = torch.cross(pseudo_up_axis, forward_axis, dim=-1) # [N, 3]
left_axis = F.normalize(left_axis, dim=-1) # [N, 3]
up_axis = torch.cross(forward_axis, left_axis, dim=-1) # [N, 3]
up_axis = F.normalize(up_axis, dim=-1) # [N, 3]
rotation_matrix = torch.eye(4, device=device).unsqueeze(0).repeat(N, 1, 1)
rotation_matrix[:, :3, 0] = -left_axis
rotation_matrix[:, :3, 1] = up_axis
rotation_matrix[:, :3, 2] = -forward_axis # [N, 4, 4]
translation_matrix = torch.eye(4, device=device)
translation_matrix = translation_matrix.unsqueeze(0).repeat(N, 1, 1)
translation_matrix[:, :3, 3] = camera_pos # [N, 4, 4]
cam2world_matrix = (translation_matrix @ rotation_matrix @
roll_matrix @ yaw_matrix @ pitch_matrix) # [N, 4, 4]
return {
'radius': radius,
'polar': polar,
'azimuthal': azimuthal,
'pitch': pitch,
'yaw': yaw,
'roll': roll,
'camera_pos':camera_pos,
'cam2world_matrix': cam2world_matrix
}
def get_point_coord(rays_camera, radii, cam2world_matrix):
"""Gets pre-point coordinate in the world coordinate system.
`N`, `H`, `W`, `K` denote batch size, image height, image width, number of
points per ray, respectively.
Args:
rays_camera: Per-pixel ray direction, with shape [N, H, W, 3], in the
camera coordinate system.
radii: Per-point radial distance on each ray, with shape [N, H, W, K].
cam2world_matrix: Transformation matrix that transforms the camera
coordinate system to the world coordinate system, with shape
[N, 4, 4].
Returns:
A dictionary, containing
- `rays_world`: ray directions in the world coordinate system,
with shape [N, H, W, 3].
- `points_camera`: per-point coordinate in the camera coordinate
system, with shape [N, H, W, K, 3].
- `points_world`: per-point coordinate in the world coordinate
system, with shape [N, H, W, K, 3].
Raises:
ValueError: If any input has invalid shape.
"""
# Check inputs.
if rays_camera.ndim != 4 or rays_camera.shape[3] != 3:
raise ValueError(f'The input rays should be with shape '
f'[batch_size, height, width, 3], '
f'but `{rays_camera.shape}` is received!')
N, H, W, _ = rays_camera.shape
if radii.ndim != 4 or radii.shape[:3] != (N, H, W):
raise ValueError(f'The input radii should be with shape '
f'[batch_size, height, width, num_points], where '
f'batch_size, height, width align with those of rays, '
f'but `{radii.shape}` is received!')
K = radii.shape[3]
if cam2world_matrix.shape != (N, 4, 4):
raise ValueError(f'The input cam2world_matrix should be with shape '
f'[batch_size, 4, 4], where batch_size align with '
f'that of rays and radii '
f'but `{cam2world_matrix.shape}` is received!')
# Get running device.
device = torch.cuda.current_device() if torch.cuda.is_available() else 'cpu'
# Transform rays.
rays_world = (cam2world_matrix[:, :3, :3] @
rays_camera.reshape(N, -1, 3).permute(0, 2, 1))
rays_world = rays_world.permute(0, 2, 1).reshape(N, H, W, 3)
# Transform ray origins.
ray_origins_homo = torch.zeros((N, H * W, 4), device=device)
ray_origins_homo[..., 3] = 1
ray_origins_world = torch.bmm(cam2world_matrix,
ray_origins_homo.permute(0, 2, 1)).permute(
0, 2, 1)[..., :3]
ray_origins_world = ray_origins_world.reshape(N, H, W, 3)
# Transform points.
points_camera = (rays_camera.unsqueeze(3) *
radii.unsqueeze(4)) # [N, H, W, K, 3]
points_camera_homo = torch.cat(
[points_camera, torch.ones((N, H, W, K, 1), device=device)],
dim=-1) # [N, H, W, K, 4]
points_world_homo = (cam2world_matrix @
points_camera_homo.reshape(N, -1, 4).permute(0, 2, 1))
points_world = points_world_homo.permute(0, 2, 1)[:, :, :3]
points_world = points_world.reshape(N, H, W, K, 3)
return {
'rays_world': rays_world,
'ray_origins_world': ray_origins_world,
'points_camera': points_camera,
'points_world': points_world,
}
|