File size: 15,293 Bytes
2f85de4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 |
# python3.8
"""Contains image renderer class."""
import torch
import torch.nn as nn
from .point_sampler import PointSampler
from .integrator import Integrator
__all__ = ['Renderer']
class Renderer(nn.Module):
"""Defines the class to render images.
The renderer is a module that takes in latent codes and points, decides
where to sample along each ray, and computes pixel colors/features using the
volume rendering equation.
Basically, the volume rendering pipiline consists of the following steps:
1. Sample points in 3D Space.
2. (Optional) Get the reference representation by injecting latent codes
into the reference representation generator. Generally, the reference
representation can be a feature volume (VolumenGAN), a triplane (EG3D) or
others.
3. Get the corresponding feature of each sampled point by the given feature
extractor. Typically, the overall formulation is:
feat = F(wp, points, options, ref_representation, post_module)
where
`feat`: The output points' features.
`F`: The feature extractor.
`wp`: The latent codes in W-sapce.
`points`: Sampled points.
`options`: Some options for rendering.
`ref_representation`: The reference representation obtained in step 2.
`post_module`: The post module, is usually a MLP.
4. Get the sigma's and rgb's value (or feature) by feeding `feat` in
step 3 into one or two fully-connected layer head.
5. Coarse pass to do the integration.
6. Hierarchically sample points on top of step 5.
6. Fine pass to do the integration.
Note: In the following scripts, meanings of variables `N, H, W, R, K, C` are:
- `N`: Batch size.
- `H`: Height of image.
- `W`: Width of image.
- `R`: Number of rays, usually equals `H * W`.
- `K`: Number of points on each ray.
- `C`: Number of channels w.r.t. features or images, e.t.c.
"""
def __init__(self):
super().__init__()
self.point_sampler = PointSampler()
self.integrator = Integrator()
def forward(
self,
wp,
feature_extractor,
rendering_options,
cam2world_matrix=None,
position_encoder=None,
ref_representation=None,
post_module=None,
post_module_kwargs={},
fc_head=None,
fc_head_kwargs={},
):
#TODO: Organize `rendering_options` like the following format:
'''
rendering_options = dict(
point_sampler_options=dict(
focal=None,
...
)
integrator_options=dict(...),
....,
xxx=xxx, # some public parameters.
...
)
'''
batch_size= wp.shape[0]
# Sample points.
sampling_point_res = self.point_sampler(
batch_size=batch_size,
focal=rendering_options.get('focal', None),
image_boundary_value=rendering_options.get('image_boundary_value',
0.5),
cam_look_at_dir=rendering_options.get('cam_look_at_dir', +1),
pixel_center=rendering_options.get('pixel_center', True),
y_descending=rendering_options.get('y_descending', False),
image_size=rendering_options.get('resolution', 64),
dis_min=rendering_options.get('ray_start', None),
dis_max=rendering_options.get('ray_end', None),
cam2world_matrix=cam2world_matrix,
num_points=rendering_options.get('depth_resolution', 48),
perturbation_strategy=rendering_options.get(
'perturbation_strategy', 'uniform'),
radius_strategy=rendering_options.get('radius_strategy', None),
radius_fix=rendering_options.get('radius_fix', None),
polar_strategy=rendering_options.get('polar_strategy', None),
polar_fix=rendering_options.get('polar_fix', None),
polar_mean=rendering_options.get('polar_mean', None),
polar_stddev=rendering_options.get('polar_stddev', None),
azimuthal_strategy=rendering_options.get('azimuthal_strategy',
None),
azimuthal_fix=rendering_options.get('azimuthal_fix', None),
azimuthal_mean=rendering_options.get('azimuthal_mean', None),
azimuthal_stddev=rendering_options.get('azimuthal_stddev', None),
fov=rendering_options.get('fov', 30),
)
points = sampling_point_res['points_world'] # [N, H, W, K, 3]
ray_dirs = sampling_point_res['rays_world'] # [N, H, W, 3]
ray_origins = sampling_point_res['ray_origins_world'] # [N, H, W, 3]
z_coarse = sampling_point_res['radii'] # [N, H, W, K]
# NOTE: `pitch` is used to stand for `polar` in other code.
camera_polar = sampling_point_res['camera_polar'] # [N]
# NOTE: `yaw` is used to stand for `azimuthal` in other code.
camera_azimuthal = sampling_point_res['camera_azimuthal'] # [N]
if camera_polar is not None:
camera_polar = camera_polar.unsqueeze(-1)
if camera_azimuthal is not None:
camera_azimuthal = camera_azimuthal.unsqueeze(-1)
# Reshape.
N, H, W, K, _ = points.shape
assert N == batch_size
R = H * W # number of rays
points = points.reshape(N, R, K, -1)
ray_dirs = ray_dirs.reshape(N, R, -1)
ray_origins = ray_origins.reshape(N, R, -1)
z_coarse = z_coarse.reshape(N, R, K, -1)
out = self.get_sigma_rgb(wp,
points,
feature_extractor,
rendering_options=rendering_options,
position_encoder=position_encoder,
ref_representation=ref_representation,
post_module=post_module,
post_module_kwargs=post_module_kwargs,
fc_head=fc_head,
fc_head_kwargs=dict(**fc_head_kwargs,
wp=wp),
ray_dirs=ray_dirs,
cam_matrix=cam2world_matrix)
sigmas_coarse = out['sigma'] # [N, H * W * K, 1]
rgbs_coarse = out['rgb'] # [N, H * W * K, C]
sigmas_coarse = sigmas_coarse.reshape(N, R, K,
sigmas_coarse.shape[-1])
rgbs_coarse = rgbs_coarse.reshape(N, R, K, rgbs_coarse.shape[-1])
# Do the integration.
N_importance = rendering_options.get('depth_resolution_importance', 0)
if N_importance > 0:
# Do the integration in coarse pass.
rendering_result = self.integrator(rgbs_coarse, sigmas_coarse,
z_coarse, rendering_options)
weights = rendering_result['weights']
# Importrance sampling.
z_fine = self.sample_importance(
z_coarse,
weights,
N_importance,
smooth_weights=rendering_options.get('smooth_weights', True))
points = ray_origins.unsqueeze(-2) + z_fine * ray_dirs.unsqueeze(-2)
# Get sigma's and rgb's value (or feature).
out = self.get_sigma_rgb(wp,
points,
feature_extractor,
rendering_options=rendering_options,
position_encoder=position_encoder,
ref_representation=ref_representation,
post_module=post_module,
post_module_kwargs=post_module_kwargs,
fc_head=fc_head,
fc_head_kwargs=dict(**fc_head_kwargs,
wp=wp),
ray_dirs=ray_dirs,
cam_matrix=cam2world_matrix)
sigmas_fine = out['sigma']
rgbs_fine = out['rgb']
sigmas_fine = sigmas_fine.reshape(N, R, N_importance,
sigmas_fine.shape[-1])
rgbs_fine = rgbs_fine.reshape(N, R, N_importance,
rgbs_fine.shape[-1])
# Gather coarse and fine results.
all_zs, all_rgbs, all_sigmas = self.unify_samples(
z_coarse, rgbs_coarse, sigmas_coarse,
z_fine, rgbs_fine, sigmas_fine)
# Do the integration in fine pass.
final_rendering_result = self.integrator(
all_rgbs, all_sigmas, all_zs, rendering_options)
else:
final_rendering_result = self.integrator(
rgbs_coarse, sigmas_coarse, z_coarse, rendering_options)
return {
**final_rendering_result,
**{
'camera_azimuthal': camera_azimuthal,
'camera_polar': camera_polar
},
**{
'points': points,
'sigmas': sigmas_fine,
}
}
def get_sigma_rgb(self,
wp,
points,
feature_extractor,
rendering_options,
position_encoder=None,
ref_representation=None,
post_module=None,
post_module_kwargs={},
fc_head=None,
fc_head_kwargs={},
ray_dirs=None,
cam_matrix=None):
# Get point feature in coarse pass.
point_features = feature_extractor(wp, points, rendering_options,
position_encoder,
ref_representation, post_module,
post_module_kwargs, ray_dirs, cam_matrix)
# Get sigma's and rgb's value (or feature).
if ray_dirs.ndim != points.ndim:
ray_dirs = ray_dirs.unsqueeze(-2).expand_as(points)
ray_dirs = ray_dirs.reshape(ray_dirs.shape[0], -1, ray_dirs.shape[-1])
# with shape [N, R * K, 3]
out = fc_head(point_features, dirs=ray_dirs, **fc_head_kwargs)
if rendering_options.get('noise_std', 0) > 0:
out['sigma'] = out['sigma'] + torch.randn_like(
out['sigma']) * rendering_options['noise_std']
return out
def unify_samples(self, depths1, rgbs1, sigmas1, depths2, rgbs2, sigmas2):
all_depths = torch.cat([depths1, depths2], dim=-2)
all_colors = torch.cat([rgbs1, rgbs2], dim=-2)
all_densities = torch.cat([sigmas1, sigmas2], dim=-2)
_, indices = torch.sort(all_depths, dim=-2)
all_depths = torch.gather(all_depths, -2, indices)
all_colors = torch.gather(
all_colors, -2, indices.expand(-1, -1, -1, all_colors.shape[-1]))
all_densities = torch.gather(all_densities, -2,
indices.expand(-1, -1, -1, 1))
return all_depths, all_colors, all_densities
def sample_importance(self,
z_vals,
weights,
N_importance,
smooth_weights=False):
""" Implements NeRF importance sampling.
Returns:
importance_z_vals: Depths of importance sampled points along rays.
"""
with torch.no_grad():
batch_size, num_rays, samples_per_ray, _ = z_vals.shape
z_vals = z_vals.reshape(batch_size * num_rays, samples_per_ray)
weights = weights.reshape(batch_size * num_rays, -1) + 1e-5
# smooth weights
if smooth_weights:
weights = torch.nn.functional.max_pool1d(
weights.unsqueeze(1).float(), 2, 1, padding=1)
weights = torch.nn.functional.avg_pool1d(weights, 2,
1).squeeze()
weights = weights + 0.01
z_vals_mid = 0.5 * (z_vals[:, :-1] + z_vals[:, 1:])
importance_z_vals = self.sample_pdf(z_vals_mid, weights[:, 1:-1],
N_importance).detach().reshape(
batch_size, num_rays,
N_importance, 1)
return importance_z_vals
def sample_pdf(self, bins, weights, N_importance, det=False, eps=1e-5):
"""Sample `N_importance` samples from `bins` with distribution defined
by `weights`.
Args:
bins: (N_rays, N_samples_+1) where N_samples_ is the number of
coarse samples per ray - 2
weights: (N_rays, N_samples_)
N_importance: the number of samples to draw from the distribution
det: deterministic or not
eps: a small number to prevent division by zero
Returns:
samples: the sampled samples
Source:
https://github.com/kwea123/nerf_pl/blob/master/models/rendering.py
"""
N_rays, N_samples_ = weights.shape
weights = weights + eps
# prevent division by zero (don't do inplace op!)
pdf = weights / torch.sum(weights, -1,
keepdim=True) # (N_rays, N_samples_)
cdf = torch.cumsum(pdf, -1) # (N_rays, N_samples),
# cumulative distribution function
cdf = torch.cat([torch.zeros_like(cdf[:, :1]), cdf],
-1) # (N_rays, N_samples_+1)
# padded to 0~1 inclusive
if det:
u = torch.linspace(0, 1, N_importance, device=bins.device)
u = u.expand(N_rays, N_importance)
else:
u = torch.rand(N_rays, N_importance, device=bins.device)
u = u.contiguous()
inds = torch.searchsorted(cdf, u)
below = torch.clamp_min(inds - 1, 0)
above = torch.clamp_max(inds, N_samples_)
inds_sampled = torch.stack([below, above],
-1).view(N_rays, 2 * N_importance)
cdf_g = torch.gather(cdf, 1, inds_sampled)
cdf_g = cdf_g.view(N_rays, N_importance, 2)
bins_g = torch.gather(bins, 1,
inds_sampled).view(N_rays, N_importance, 2)
denom = cdf_g[..., 1] - cdf_g[..., 0]
denom[denom < eps] = 1 # denom equals 0 means a bin has weight 0,
# in which case it will not be sampled
# anyway, therefore any value for it is fine
# (set to 1 here)
samples = (bins_g[..., 0] + (u - cdf_g[..., 0]) /
denom * (bins_g[..., 1] - bins_g[..., 0]))
return samples
|