|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""Custom ops to fuse bias and activation as one operator, which is efficient. |
|
|
|
Please refer to https://github.com/NVlabs/stylegan2-ada-pytorch |
|
""" |
|
|
|
|
|
|
|
|
|
|
|
|
|
import os |
|
import warnings |
|
import traceback |
|
from easydict import EasyDict |
|
import numpy as np |
|
import torch |
|
|
|
from . import custom_ops |
|
from . import misc |
|
|
|
|
|
|
|
activation_funcs = { |
|
'linear': EasyDict(func=lambda x, **_: x, def_alpha=0, def_gain=1, cuda_idx=1, ref='', has_2nd_grad=False), |
|
'relu': EasyDict(func=lambda x, **_: torch.nn.functional.relu(x), def_alpha=0, def_gain=np.sqrt(2), cuda_idx=2, ref='y', has_2nd_grad=False), |
|
'lrelu': EasyDict(func=lambda x, alpha, **_: torch.nn.functional.leaky_relu(x, alpha), def_alpha=0.2, def_gain=np.sqrt(2), cuda_idx=3, ref='y', has_2nd_grad=False), |
|
'tanh': EasyDict(func=lambda x, **_: torch.tanh(x), def_alpha=0, def_gain=1, cuda_idx=4, ref='y', has_2nd_grad=True), |
|
'sigmoid': EasyDict(func=lambda x, **_: torch.sigmoid(x), def_alpha=0, def_gain=1, cuda_idx=5, ref='y', has_2nd_grad=True), |
|
'elu': EasyDict(func=lambda x, **_: torch.nn.functional.elu(x), def_alpha=0, def_gain=1, cuda_idx=6, ref='y', has_2nd_grad=True), |
|
'selu': EasyDict(func=lambda x, **_: torch.nn.functional.selu(x), def_alpha=0, def_gain=1, cuda_idx=7, ref='y', has_2nd_grad=True), |
|
'softplus': EasyDict(func=lambda x, **_: torch.nn.functional.softplus(x), def_alpha=0, def_gain=1, cuda_idx=8, ref='y', has_2nd_grad=True), |
|
'swish': EasyDict(func=lambda x, **_: torch.sigmoid(x) * x, def_alpha=0, def_gain=np.sqrt(2), cuda_idx=9, ref='x', has_2nd_grad=True), |
|
} |
|
|
|
|
|
|
|
_inited = False |
|
_plugin = None |
|
_null_tensor = torch.empty([0]) |
|
|
|
def _init(): |
|
global _inited, _plugin |
|
if not _inited: |
|
_inited = True |
|
sources = ['bias_act.cpp', 'bias_act.cu'] |
|
sources = [os.path.join(os.path.dirname(__file__), s) for s in sources] |
|
try: |
|
_plugin = custom_ops.get_plugin('bias_act_plugin', sources=sources, extra_cuda_cflags=['--use_fast_math']) |
|
except: |
|
warnings.warn('Failed to build CUDA kernels for bias_act. Falling back to slow reference implementation. Details:\n\n' + traceback.format_exc()) |
|
return _plugin is not None |
|
|
|
|
|
|
|
def bias_act(x, b=None, dim=1, act='linear', alpha=None, gain=None, clamp=None, impl='cuda'): |
|
r"""Fused bias and activation function. |
|
|
|
Adds bias `b` to activation tensor `x`, evaluates activation function `act`, |
|
and scales the result by `gain`. Each of the steps is optional. In most cases, |
|
the fused op is considerably more efficient than performing the same calculation |
|
using standard PyTorch ops. It supports first and second order gradients, |
|
but not third order gradients. |
|
|
|
Args: |
|
x: Input activation tensor. Can be of any shape. |
|
b: Bias vector, or `None` to disable. Must be a 1D tensor of the same type |
|
as `x`. The shape must be known, and it must match the dimension of `x` |
|
corresponding to `dim`. |
|
dim: The dimension in `x` corresponding to the elements of `b`. |
|
The value of `dim` is ignored if `b` is not specified. |
|
act: Name of the activation function to evaluate, or `"linear"` to disable. |
|
Can be e.g. `"relu"`, `"lrelu"`, `"tanh"`, `"sigmoid"`, `"swish"`, etc. |
|
See `activation_funcs` for a full list. `None` is not allowed. |
|
alpha: Shape parameter for the activation function, or `None` to use the default. |
|
gain: Scaling factor for the output tensor, or `None` to use default. |
|
See `activation_funcs` for the default scaling of each activation function. |
|
If unsure, consider specifying 1. |
|
clamp: Clamp the output values to `[-clamp, +clamp]`, or `None` to disable |
|
the clamping (default). |
|
impl: Name of the implementation to use. Can be `"ref"` or `"cuda"` (default). |
|
|
|
Returns: |
|
Tensor of the same shape and datatype as `x`. |
|
""" |
|
assert isinstance(x, torch.Tensor) |
|
assert impl in ['ref', 'cuda'] |
|
if impl == 'cuda' and x.device.type == 'cuda' and _init(): |
|
return _bias_act_cuda(dim=dim, act=act, alpha=alpha, gain=gain, clamp=clamp).apply(x, b) |
|
return _bias_act_ref(x=x, b=b, dim=dim, act=act, alpha=alpha, gain=gain, clamp=clamp) |
|
|
|
|
|
|
|
@misc.profiled_function |
|
def _bias_act_ref(x, b=None, dim=1, act='linear', alpha=None, gain=None, clamp=None): |
|
"""Slow reference implementation of `bias_act()` using standard TensorFlow ops. |
|
""" |
|
assert isinstance(x, torch.Tensor) |
|
assert clamp is None or clamp >= 0 |
|
spec = activation_funcs[act] |
|
alpha = float(alpha if alpha is not None else spec.def_alpha) |
|
gain = float(gain if gain is not None else spec.def_gain) |
|
clamp = float(clamp if clamp is not None else -1) |
|
|
|
|
|
if b is not None: |
|
assert isinstance(b, torch.Tensor) and b.ndim == 1 |
|
assert 0 <= dim < x.ndim |
|
assert b.shape[0] == x.shape[dim] |
|
x = x + b.reshape([-1 if i == dim else 1 for i in range(x.ndim)]) |
|
|
|
|
|
alpha = float(alpha) |
|
x = spec.func(x, alpha=alpha) |
|
|
|
|
|
gain = float(gain) |
|
if gain != 1: |
|
x = x * gain |
|
|
|
|
|
if clamp >= 0: |
|
x = x.clamp(-clamp, clamp) |
|
return x |
|
|
|
|
|
|
|
_bias_act_cuda_cache = dict() |
|
|
|
def _bias_act_cuda(dim=1, act='linear', alpha=None, gain=None, clamp=None): |
|
"""Fast CUDA implementation of `bias_act()` using custom ops. |
|
""" |
|
|
|
assert clamp is None or clamp >= 0 |
|
spec = activation_funcs[act] |
|
alpha = float(alpha if alpha is not None else spec.def_alpha) |
|
gain = float(gain if gain is not None else spec.def_gain) |
|
clamp = float(clamp if clamp is not None else -1) |
|
|
|
|
|
key = (dim, act, alpha, gain, clamp) |
|
if key in _bias_act_cuda_cache: |
|
return _bias_act_cuda_cache[key] |
|
|
|
|
|
class BiasActCuda(torch.autograd.Function): |
|
@staticmethod |
|
def forward(ctx, x, b): |
|
ctx.memory_format = torch.channels_last if x.ndim > 2 and x.stride()[1] == 1 else torch.contiguous_format |
|
x = x.contiguous(memory_format=ctx.memory_format) |
|
b = b.contiguous() if b is not None else _null_tensor |
|
y = x |
|
if act != 'linear' or gain != 1 or clamp >= 0 or b is not _null_tensor: |
|
y = _plugin.bias_act(x, b, _null_tensor, _null_tensor, _null_tensor, 0, dim, spec.cuda_idx, alpha, gain, clamp) |
|
ctx.save_for_backward( |
|
x if 'x' in spec.ref or spec.has_2nd_grad else _null_tensor, |
|
b if 'x' in spec.ref or spec.has_2nd_grad else _null_tensor, |
|
y if 'y' in spec.ref else _null_tensor) |
|
return y |
|
|
|
@staticmethod |
|
def backward(ctx, dy): |
|
dy = dy.contiguous(memory_format=ctx.memory_format) |
|
x, b, y = ctx.saved_tensors |
|
dx = None |
|
db = None |
|
|
|
if ctx.needs_input_grad[0] or ctx.needs_input_grad[1]: |
|
dx = dy |
|
if act != 'linear' or gain != 1 or clamp >= 0: |
|
dx = BiasActCudaGrad.apply(dy, x, b, y) |
|
|
|
if ctx.needs_input_grad[1]: |
|
db = dx.sum([i for i in range(dx.ndim) if i != dim]) |
|
|
|
return dx, db |
|
|
|
|
|
class BiasActCudaGrad(torch.autograd.Function): |
|
@staticmethod |
|
def forward(ctx, dy, x, b, y): |
|
ctx.memory_format = torch.channels_last if dy.ndim > 2 and dy.stride()[1] == 1 else torch.contiguous_format |
|
dx = _plugin.bias_act(dy, b, x, y, _null_tensor, 1, dim, spec.cuda_idx, alpha, gain, clamp) |
|
ctx.save_for_backward( |
|
dy if spec.has_2nd_grad else _null_tensor, |
|
x, b, y) |
|
return dx |
|
|
|
@staticmethod |
|
def backward(ctx, d_dx): |
|
d_dx = d_dx.contiguous(memory_format=ctx.memory_format) |
|
dy, x, b, y = ctx.saved_tensors |
|
d_dy = None |
|
d_x = None |
|
d_b = None |
|
d_y = None |
|
|
|
if ctx.needs_input_grad[0]: |
|
d_dy = BiasActCudaGrad.apply(d_dx, x, b, y) |
|
|
|
if spec.has_2nd_grad and (ctx.needs_input_grad[1] or ctx.needs_input_grad[2]): |
|
d_x = _plugin.bias_act(d_dx, b, x, y, dy, 2, dim, spec.cuda_idx, alpha, gain, clamp) |
|
|
|
if spec.has_2nd_grad and ctx.needs_input_grad[2]: |
|
d_b = d_x.sum([i for i in range(d_x.ndim) if i != dim]) |
|
|
|
return d_dy, d_x, d_b, d_y |
|
|
|
|
|
_bias_act_cuda_cache[key] = BiasActCuda |
|
return BiasActCuda |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|