|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#include <torch/extension.h> |
|
#include <ATen/cuda/CUDAContext.h> |
|
#include <c10/cuda/CUDAGuard.h> |
|
#include "upfirdn2d.h" |
|
|
|
|
|
|
|
static torch::Tensor upfirdn2d(torch::Tensor x, torch::Tensor f, int upx, int upy, int downx, int downy, int padx0, int padx1, int pady0, int pady1, bool flip, float gain) |
|
{ |
|
|
|
TORCH_CHECK(x.is_cuda(), "x must reside on CUDA device"); |
|
TORCH_CHECK(f.device() == x.device(), "f must reside on the same device as x"); |
|
TORCH_CHECK(f.dtype() == torch::kFloat, "f must be float32"); |
|
TORCH_CHECK(x.numel() <= INT_MAX, "x is too large"); |
|
TORCH_CHECK(f.numel() <= INT_MAX, "f is too large"); |
|
TORCH_CHECK(x.dim() == 4, "x must be rank 4"); |
|
TORCH_CHECK(f.dim() == 2, "f must be rank 2"); |
|
TORCH_CHECK(f.size(0) >= 1 && f.size(1) >= 1, "f must be at least 1x1"); |
|
TORCH_CHECK(upx >= 1 && upy >= 1, "upsampling factor must be at least 1"); |
|
TORCH_CHECK(downx >= 1 && downy >= 1, "downsampling factor must be at least 1"); |
|
|
|
|
|
const at::cuda::OptionalCUDAGuard device_guard(device_of(x)); |
|
int outW = ((int)x.size(3) * upx + padx0 + padx1 - (int)f.size(1) + downx) / downx; |
|
int outH = ((int)x.size(2) * upy + pady0 + pady1 - (int)f.size(0) + downy) / downy; |
|
TORCH_CHECK(outW >= 1 && outH >= 1, "output must be at least 1x1"); |
|
torch::Tensor y = torch::empty({x.size(0), x.size(1), outH, outW}, x.options(), x.suggest_memory_format()); |
|
TORCH_CHECK(y.numel() <= INT_MAX, "output is too large"); |
|
|
|
|
|
upfirdn2d_kernel_params p; |
|
p.x = x.data_ptr(); |
|
p.f = f.data_ptr<float>(); |
|
p.y = y.data_ptr(); |
|
p.up = make_int2(upx, upy); |
|
p.down = make_int2(downx, downy); |
|
p.pad0 = make_int2(padx0, pady0); |
|
p.flip = (flip) ? 1 : 0; |
|
p.gain = gain; |
|
p.inSize = make_int4((int)x.size(3), (int)x.size(2), (int)x.size(1), (int)x.size(0)); |
|
p.inStride = make_int4((int)x.stride(3), (int)x.stride(2), (int)x.stride(1), (int)x.stride(0)); |
|
p.filterSize = make_int2((int)f.size(1), (int)f.size(0)); |
|
p.filterStride = make_int2((int)f.stride(1), (int)f.stride(0)); |
|
p.outSize = make_int4((int)y.size(3), (int)y.size(2), (int)y.size(1), (int)y.size(0)); |
|
p.outStride = make_int4((int)y.stride(3), (int)y.stride(2), (int)y.stride(1), (int)y.stride(0)); |
|
p.sizeMajor = (p.inStride.z == 1) ? p.inSize.w : p.inSize.w * p.inSize.z; |
|
p.sizeMinor = (p.inStride.z == 1) ? p.inSize.z : 1; |
|
|
|
|
|
upfirdn2d_kernel_spec spec; |
|
AT_DISPATCH_FLOATING_TYPES_AND_HALF(x.scalar_type(), "upfirdn2d_cuda", [&] |
|
{ |
|
spec = choose_upfirdn2d_kernel<scalar_t>(p); |
|
}); |
|
|
|
|
|
p.loopMajor = (p.sizeMajor - 1) / 16384 + 1; |
|
p.loopMinor = spec.loopMinor; |
|
p.loopX = spec.loopX; |
|
p.launchMinor = (p.sizeMinor - 1) / p.loopMinor + 1; |
|
p.launchMajor = (p.sizeMajor - 1) / p.loopMajor + 1; |
|
|
|
|
|
dim3 blockSize, gridSize; |
|
if (spec.tileOutW < 0) |
|
{ |
|
blockSize = dim3(4, 32, 1); |
|
gridSize = dim3( |
|
((p.outSize.y - 1) / blockSize.x + 1) * p.launchMinor, |
|
(p.outSize.x - 1) / (blockSize.y * p.loopX) + 1, |
|
p.launchMajor); |
|
} |
|
else |
|
{ |
|
blockSize = dim3(256, 1, 1); |
|
gridSize = dim3( |
|
((p.outSize.y - 1) / spec.tileOutH + 1) * p.launchMinor, |
|
(p.outSize.x - 1) / (spec.tileOutW * p.loopX) + 1, |
|
p.launchMajor); |
|
} |
|
|
|
|
|
void* args[] = {&p}; |
|
AT_CUDA_CHECK(cudaLaunchKernel(spec.kernel, gridSize, blockSize, args, 0, at::cuda::getCurrentCUDAStream())); |
|
return y; |
|
} |
|
|
|
|
|
|
|
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) |
|
{ |
|
m.def("upfirdn2d", &upfirdn2d); |
|
} |
|
|
|
|
|
|