|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""2D convolution with optional up/downsampling. |
|
|
|
Please refer to https://github.com/NVlabs/stylegan2-ada-pytorch |
|
""" |
|
|
|
|
|
|
|
import torch |
|
|
|
from . import misc |
|
from . import conv2d_gradfix |
|
from . import upfirdn2d |
|
from .upfirdn2d import _parse_padding |
|
from .upfirdn2d import _get_filter_size |
|
|
|
|
|
|
|
def _get_weight_shape(w): |
|
with misc.suppress_tracer_warnings(): |
|
shape = [int(sz) for sz in w.shape] |
|
misc.assert_shape(w, shape) |
|
return shape |
|
|
|
|
|
|
|
def _conv2d_wrapper(x, w, stride=1, padding=0, groups=1, transpose=False, flip_weight=True, impl='cuda'): |
|
"""Wrapper for the underlying `conv2d()` and `conv_transpose2d()` implementations. |
|
""" |
|
out_channels, in_channels_per_group, kh, kw = _get_weight_shape(w) |
|
|
|
|
|
if not flip_weight: |
|
w = w.flip([2, 3]) |
|
|
|
|
|
|
|
if kw == 1 and kh == 1 and stride == 1 and padding in [0, [0, 0], (0, 0)] and not transpose: |
|
if x.stride()[1] == 1 and min(out_channels, in_channels_per_group) < 64: |
|
if out_channels <= 4 and groups == 1: |
|
in_shape = x.shape |
|
x = w.squeeze(3).squeeze(2) @ x.reshape([in_shape[0], in_channels_per_group, -1]) |
|
x = x.reshape([in_shape[0], out_channels, in_shape[2], in_shape[3]]) |
|
else: |
|
x = x.to(memory_format=torch.contiguous_format) |
|
w = w.to(memory_format=torch.contiguous_format) |
|
x = conv2d_gradfix.conv2d(x, w, groups=groups, impl=impl) |
|
return x.to(memory_format=torch.channels_last) |
|
|
|
|
|
op = conv2d_gradfix.conv_transpose2d if transpose else conv2d_gradfix.conv2d |
|
return op(x, w, stride=stride, padding=padding, groups=groups, impl=impl) |
|
|
|
|
|
|
|
@misc.profiled_function |
|
def conv2d_resample(x, w, f=None, up=1, down=1, padding=0, groups=1, flip_weight=True, flip_filter=False, impl='cuda'): |
|
r"""2D convolution with optional up/downsampling. |
|
|
|
Padding is performed only once at the beginning, not between the operations. |
|
|
|
Args: |
|
x: Input tensor of shape |
|
`[batch_size, in_channels, in_height, in_width]`. |
|
w: Weight tensor of shape |
|
`[out_channels, in_channels//groups, kernel_height, kernel_width]`. |
|
f: Low-pass filter for up/downsampling. Must be prepared beforehand by |
|
calling upfirdn2d.setup_filter(). None = identity (default). |
|
up: Integer upsampling factor (default: 1). |
|
down: Integer downsampling factor (default: 1). |
|
padding: Padding with respect to the upsampled image. Can be a single number |
|
or a list/tuple `[x, y]` or `[x_before, x_after, y_before, y_after]` |
|
(default: 0). |
|
groups: Split input channels into N groups (default: 1). |
|
flip_weight: False = convolution, True = correlation (default: True). |
|
flip_filter: False = convolution, True = correlation (default: False). |
|
impl: Implementation mode of customized ops. 'ref' for native PyTorch |
|
implementation, 'cuda' for `.cu` implementation |
|
(default: 'cuda'). |
|
|
|
Returns: |
|
Tensor of the shape `[batch_size, num_channels, out_height, out_width]`. |
|
""" |
|
|
|
assert isinstance(x, torch.Tensor) and (x.ndim == 4) |
|
assert isinstance(w, torch.Tensor) and (w.ndim == 4) and (w.dtype == x.dtype) |
|
assert f is None or (isinstance(f, torch.Tensor) and f.ndim in [1, 2] and f.dtype == torch.float32) |
|
assert isinstance(up, int) and (up >= 1) |
|
assert isinstance(down, int) and (down >= 1) |
|
assert isinstance(groups, int) and (groups >= 1) |
|
out_channels, in_channels_per_group, kh, kw = _get_weight_shape(w) |
|
fw, fh = _get_filter_size(f) |
|
px0, px1, py0, py1 = _parse_padding(padding) |
|
|
|
|
|
if up > 1: |
|
px0 += (fw + up - 1) // 2 |
|
px1 += (fw - up) // 2 |
|
py0 += (fh + up - 1) // 2 |
|
py1 += (fh - up) // 2 |
|
if down > 1: |
|
px0 += (fw - down + 1) // 2 |
|
px1 += (fw - down) // 2 |
|
py0 += (fh - down + 1) // 2 |
|
py1 += (fh - down) // 2 |
|
|
|
|
|
if kw == 1 and kh == 1 and (down > 1 and up == 1): |
|
x = upfirdn2d.upfirdn2d(x=x, f=f, down=down, padding=[px0,px1,py0,py1], flip_filter=flip_filter, impl=impl) |
|
x = _conv2d_wrapper(x=x, w=w, groups=groups, flip_weight=flip_weight, impl=impl) |
|
return x |
|
|
|
|
|
if kw == 1 and kh == 1 and (up > 1 and down == 1): |
|
x = _conv2d_wrapper(x=x, w=w, groups=groups, flip_weight=flip_weight, impl=impl) |
|
x = upfirdn2d.upfirdn2d(x=x, f=f, up=up, padding=[px0,px1,py0,py1], gain=up**2, flip_filter=flip_filter, impl=impl) |
|
return x |
|
|
|
|
|
if down > 1 and up == 1: |
|
x = upfirdn2d.upfirdn2d(x=x, f=f, padding=[px0,px1,py0,py1], flip_filter=flip_filter, impl=impl) |
|
x = _conv2d_wrapper(x=x, w=w, stride=down, groups=groups, flip_weight=flip_weight, impl=impl) |
|
return x |
|
|
|
|
|
if up > 1: |
|
if groups == 1: |
|
w = w.transpose(0, 1) |
|
else: |
|
w = w.reshape(groups, out_channels // groups, in_channels_per_group, kh, kw) |
|
w = w.transpose(1, 2) |
|
w = w.reshape(groups * in_channels_per_group, out_channels // groups, kh, kw) |
|
px0 -= kw - 1 |
|
px1 -= kw - up |
|
py0 -= kh - 1 |
|
py1 -= kh - up |
|
pxt = max(min(-px0, -px1), 0) |
|
pyt = max(min(-py0, -py1), 0) |
|
x = _conv2d_wrapper(x=x, w=w, stride=up, padding=[pyt,pxt], groups=groups, transpose=True, flip_weight=(not flip_weight), impl=impl) |
|
x = upfirdn2d.upfirdn2d(x=x, f=f, padding=[px0+pxt,px1+pxt,py0+pyt,py1+pyt], gain=up**2, flip_filter=flip_filter, impl=impl) |
|
if down > 1: |
|
x = upfirdn2d.upfirdn2d(x=x, f=f, down=down, flip_filter=flip_filter, impl=impl) |
|
return x |
|
|
|
|
|
if up == 1 and down == 1: |
|
if px0 == px1 and py0 == py1 and px0 >= 0 and py0 >= 0: |
|
return _conv2d_wrapper(x=x, w=w, padding=[py0,px0], groups=groups, flip_weight=flip_weight, impl=impl) |
|
|
|
|
|
x = upfirdn2d.upfirdn2d(x=x, f=(f if up > 1 else None), up=up, padding=[px0,px1,py0,py1], gain=up**2, flip_filter=flip_filter, impl=impl) |
|
x = _conv2d_wrapper(x=x, w=w, groups=groups, flip_weight=flip_weight, impl=impl) |
|
if down > 1: |
|
x = upfirdn2d.upfirdn2d(x=x, f=f, down=down, flip_filter=flip_filter, impl=impl) |
|
return x |
|
|
|
|
|
|
|
|
|
|