|
|
|
"""Utility functions for visualizing results.""" |
|
|
|
import base64 |
|
import os.path |
|
import cv2 |
|
import numpy as np |
|
from bs4 import BeautifulSoup |
|
|
|
__all__ = [ |
|
'get_grid_shape', 'get_blank_image', 'load_image', 'save_image', |
|
'resize_image', 'postprocess_image', 'add_text_to_image', |
|
'parse_image_size', 'fuse_images', 'HtmlPageVisualizer', 'HtmlPageReader', |
|
'VideoReader', 'VideoWriter' |
|
] |
|
|
|
|
|
def get_grid_shape(size, row=0, col=0, is_portrait=False): |
|
"""Gets the shape of a grid based on the size. |
|
|
|
This function makes greatest effort on making the output grid square if |
|
neither `row` nor `col` is set. If `is_portrait` is set as `False`, the |
|
height will always be equal to or smaller than the width. For example, if |
|
input `size = 16`, output shape will be `(4, 4)`; if input `size = 15`, |
|
output shape will be (3, 5). Otherwise, the height will always be equal to |
|
or larger than the width. |
|
|
|
Args: |
|
size: Size (height * width) of the target grid. |
|
is_portrait: Whether to return a portrait size of a landscape size. |
|
(default: False) |
|
|
|
Returns: |
|
A two-element tuple, representing height and width respectively. |
|
""" |
|
assert isinstance(size, int) |
|
assert isinstance(row, int) |
|
assert isinstance(col, int) |
|
if size == 0: |
|
return (0, 0) |
|
|
|
if row > 0 and col > 0 and row * col != size: |
|
row = 0 |
|
col = 0 |
|
|
|
if row > 0 and size % row == 0: |
|
return (row, size // row) |
|
if col > 0 and size % col == 0: |
|
return (size // col, col) |
|
|
|
row = int(np.sqrt(size)) |
|
while row > 0: |
|
if size % row == 0: |
|
col = size // row |
|
break |
|
row = row - 1 |
|
|
|
return (col, row) if is_portrait else (row, col) |
|
|
|
|
|
def get_blank_image(height, width, channels=3, is_black=True): |
|
"""Gets a blank image, either white of black. |
|
|
|
NOTE: This function will always return an image with `RGB` channel order for |
|
color image and pixel range [0, 255]. |
|
|
|
Args: |
|
height: Height of the returned image. |
|
width: Width of the returned image. |
|
channels: Number of channels. (default: 3) |
|
is_black: Whether to return a black image. (default: True) |
|
""" |
|
shape = (height, width, channels) |
|
if is_black: |
|
return np.zeros(shape, dtype=np.uint8) |
|
return np.ones(shape, dtype=np.uint8) * 255 |
|
|
|
|
|
def load_image(path, image_channels=3): |
|
"""Loads an image from disk. |
|
|
|
NOTE: This function will always return an image with `RGB` channel order for |
|
color image and pixel range [0, 255]. |
|
|
|
Args: |
|
path: Path to load the image from. |
|
image_channels: Number of image channels of returned image. This field |
|
is employed since `cv2.imread()` will always return a 3-channel |
|
image, even for grayscale image. |
|
|
|
Returns: |
|
An image with dtype `np.ndarray`, or `None` if `path` does not exist. |
|
""" |
|
if not os.path.isfile(path): |
|
return None |
|
|
|
assert image_channels in [1, 3] |
|
|
|
image = cv2.imread(path) |
|
assert image.ndim == 3 and image.shape[2] == 3 |
|
if image_channels == 1: |
|
return image[:, :, 0:1] |
|
return image[:, :, ::-1] |
|
|
|
|
|
def save_image(path, image): |
|
"""Saves an image to disk. |
|
|
|
NOTE: The input image (if colorful) is assumed to be with `RGB` channel |
|
order and pixel range [0, 255]. |
|
|
|
Args: |
|
path: Path to save the image to. |
|
image: Image to save. |
|
""" |
|
if image is None: |
|
return |
|
|
|
assert image.ndim == 3 and image.shape[2] in [1, 3] |
|
cv2.imwrite(path, image[:, :, ::-1]) |
|
|
|
|
|
def resize_image(image, *args, **kwargs): |
|
"""Resizes image. |
|
|
|
This is a wrap of `cv2.resize()`. |
|
|
|
NOTE: THe channel order of the input image will not be changed. |
|
|
|
Args: |
|
image: Image to resize. |
|
""" |
|
if image is None: |
|
return None |
|
|
|
assert image.ndim == 3 and image.shape[2] in [1, 3] |
|
image = cv2.resize(image, *args, **kwargs) |
|
if image.ndim == 2: |
|
return image[:, :, np.newaxis] |
|
return image |
|
|
|
|
|
def postprocess_image(image, min_val=-1.0, max_val=1.0, data_format='NCHW'): |
|
"""Post-processes image to pixel range [0, 255] with dtype `uint8`. |
|
|
|
NOTE: The returned image will always be with `HWC` format. |
|
|
|
Args: |
|
min_val: Minimum value of the input image. |
|
max_val: Maximum value of the input image. |
|
data_format: Data format of the input image. Supporting `NCHW`, `NHWC`, |
|
`CHW`, `HWC`. |
|
|
|
Returns: |
|
The post-processed image. |
|
|
|
Raises: |
|
NotImplementedError: If the input `data_format` is not support. |
|
""" |
|
assert isinstance(image, np.ndarray) |
|
image = image.astype(np.float64) |
|
image = (image - min_val) * 255 / (max_val - min_val) |
|
image = np.clip(image + 0.5, 0, 255).astype(np.uint8) |
|
data_format = data_format.upper() |
|
if data_format == 'NCHW': |
|
assert image.ndim == 4 and image.shape[1] in [1, 3] |
|
return image.transpose(0, 2, 3, 1) |
|
if data_format == 'NHWC': |
|
assert image.ndim == 4 and image.shape[3] in [1, 3] |
|
return image |
|
if data_format == 'CHW': |
|
assert image.ndim == 3 and image.shape[0] in [1, 3] |
|
return image.transpose(1, 2, 0) |
|
if data_format == 'HWC': |
|
assert image.ndim == 3 and image.shape[2] in [1, 3] |
|
return image |
|
raise NotImplementedError(f'Data format `{data_format}` is not supported!') |
|
|
|
|
|
def add_text_to_image(image, |
|
text='', |
|
position=None, |
|
font=cv2.FONT_HERSHEY_TRIPLEX, |
|
font_size=1.0, |
|
line_type=cv2.LINE_8, |
|
line_width=1, |
|
color=(255, 255, 255)): |
|
"""Overlays text on given image. |
|
|
|
NOTE: The input image is assumed to be with `RGB` channel order. |
|
|
|
Args: |
|
image: The image to overlay text on. |
|
text: Text content to overlay on the image. (default: '') |
|
position: Target position (bottom-left corner) to add text. If not set, |
|
center of the image will be used by default. (default: None) |
|
font: Font of the text added. (default: cv2.FONT_HERSHEY_TRIPLEX) |
|
font_size: Font size of the text added. (default: 1.0) |
|
line_type: Line type used to depict the text. (default: cv2.LINE_8) |
|
line_width: Line width used to depict the text. (default: 1) |
|
color: Color of the text added in `RGB` channel order. (default: |
|
(255, 255, 255)) |
|
|
|
Returns: |
|
An image with target text overlayed on. |
|
""" |
|
if image is None or not text: |
|
return image |
|
|
|
cv2.putText(img=image, |
|
text=text, |
|
org=position, |
|
fontFace=font, |
|
fontScale=font_size, |
|
color=color, |
|
thickness=line_width, |
|
lineType=line_type, |
|
bottomLeftOrigin=False) |
|
|
|
return image |
|
|
|
|
|
def parse_image_size(obj): |
|
"""Parses object to a pair of image size, i.e., (width, height). |
|
|
|
Args: |
|
obj: The input object to parse image size from. |
|
|
|
Returns: |
|
A two-element tuple, indicating image width and height respectively. |
|
|
|
Raises: |
|
If the input is invalid, i.e., neither a list or tuple, nor a string. |
|
""" |
|
if obj is None or obj == '': |
|
width = height = 0 |
|
elif isinstance(obj, int): |
|
width = height = obj |
|
elif isinstance(obj, (list, tuple, np.ndarray)): |
|
numbers = tuple(obj) |
|
if len(numbers) == 0: |
|
width = height = 0 |
|
elif len(numbers) == 1: |
|
width = height = numbers[0] |
|
elif len(numbers) == 2: |
|
width = numbers[0] |
|
height = numbers[1] |
|
else: |
|
raise ValueError(f'At most two elements for image size.') |
|
elif isinstance(obj, str): |
|
splits = obj.replace(' ', '').split(',') |
|
numbers = tuple(map(int, splits)) |
|
if len(numbers) == 0: |
|
width = height = 0 |
|
elif len(numbers) == 1: |
|
width = height = numbers[0] |
|
elif len(numbers) == 2: |
|
width = numbers[0] |
|
height = numbers[1] |
|
else: |
|
raise ValueError(f'At most two elements for image size.') |
|
else: |
|
raise ValueError(f'Invalid type of input: {type(obj)}!') |
|
|
|
return (max(0, width), max(0, height)) |
|
|
|
|
|
def fuse_images(images, |
|
image_size=None, |
|
row=0, |
|
col=0, |
|
is_row_major=True, |
|
is_portrait=False, |
|
row_spacing=0, |
|
col_spacing=0, |
|
border_left=0, |
|
border_right=0, |
|
border_top=0, |
|
border_bottom=0, |
|
black_background=True): |
|
"""Fuses a collection of images into an entire image. |
|
|
|
Args: |
|
images: A collection of images to fuse. Should be with shape [num, |
|
height, width, channels]. |
|
image_size: This field is used to resize the image before fusion. `0` |
|
disables resizing. (default: None) |
|
row: Number of rows used for image fusion. If not set, this field will |
|
be automatically assigned based on `col` and total number of images. |
|
(default: None) |
|
col: Number of columns used for image fusion. If not set, this field |
|
will be automatically assigned based on `row` and total number of |
|
images. (default: None) |
|
is_row_major: Whether the input images should be arranged row-major or |
|
column-major. (default: True) |
|
is_portrait: Only active when both `row` and `col` should be assigned |
|
automatically. (default: False) |
|
row_spacing: Space between rows. (default: 0) |
|
col_spacing: Space between columns. (default: 0) |
|
border_left: Width of left border. (default: 0) |
|
border_right: Width of right border. (default: 0) |
|
border_top: Width of top border. (default: 0) |
|
border_bottom: Width of bottom border. (default: 0) |
|
|
|
Returns: |
|
The fused image. |
|
|
|
Raises: |
|
ValueError: If the input `images` is not with shape [num, height, width, |
|
width]. |
|
""" |
|
if images is None: |
|
return images |
|
|
|
if images.ndim != 4: |
|
raise ValueError(f'Input `images` should be with shape [num, height, ' |
|
f'width, channels], but {images.shape} is received!') |
|
|
|
num, image_height, image_width, channels = images.shape |
|
width, height = parse_image_size(image_size) |
|
height = height or image_height |
|
width = width or image_width |
|
row, col = get_grid_shape(num, row=row, col=col, is_portrait=is_portrait) |
|
fused_height = ( |
|
height * row + row_spacing * (row - 1) + border_top + border_bottom) |
|
fused_width = ( |
|
width * col + col_spacing * (col - 1) + border_left + border_right) |
|
fused_image = get_blank_image( |
|
fused_height, fused_width, channels=channels, is_black=black_background) |
|
images = images.reshape(row, col, image_height, image_width, channels) |
|
if not is_row_major: |
|
images = images.transpose(1, 0, 2, 3, 4) |
|
|
|
for i in range(row): |
|
y = border_top + i * (height + row_spacing) |
|
for j in range(col): |
|
x = border_left + j * (width + col_spacing) |
|
if height != image_height or width != image_width: |
|
image = cv2.resize(images[i, j], (width, height)) |
|
else: |
|
image = images[i, j] |
|
fused_image[y:y + height, x:x + width] = image |
|
|
|
return fused_image |
|
|
|
|
|
def get_sortable_html_header(column_name_list, sort_by_ascending=False): |
|
"""Gets header for sortable html page. |
|
|
|
Basically, the html page contains a sortable table, where user can sort the |
|
rows by a particular column by clicking the column head. |
|
|
|
Example: |
|
|
|
column_name_list = [name_1, name_2, name_3] |
|
header = get_sortable_html_header(column_name_list) |
|
footer = get_sortable_html_footer() |
|
sortable_table = ... |
|
html_page = header + sortable_table + footer |
|
|
|
Args: |
|
column_name_list: List of column header names. |
|
sort_by_ascending: Default sorting order. If set as `True`, the html |
|
page will be sorted by ascending order when the header is clicked |
|
for the first time. |
|
|
|
Returns: |
|
A string, which represents for the header for a sortable html page. |
|
""" |
|
header = '\n'.join([ |
|
'<script type="text/javascript">', |
|
'var column_idx;', |
|
'var sort_by_ascending = ' + str(sort_by_ascending).lower() + ';', |
|
'', |
|
'function sorting(tbody, column_idx){', |
|
' this.column_idx = column_idx;', |
|
' Array.from(tbody.rows)', |
|
' .sort(compareCells)', |
|
' .forEach(function(row) { tbody.appendChild(row); })', |
|
' sort_by_ascending = !sort_by_ascending;', |
|
'}', |
|
'', |
|
'function compareCells(row_a, row_b) {', |
|
' var val_a = row_a.cells[column_idx].innerText;', |
|
' var val_b = row_b.cells[column_idx].innerText;', |
|
' var flag = sort_by_ascending ? 1 : -1;', |
|
' return flag * (val_a > val_b ? 1 : -1);', |
|
'}', |
|
'</script>', |
|
'', |
|
'<html>', |
|
'', |
|
'<head>', |
|
'<style>', |
|
' table {', |
|
' border-spacing: 0;', |
|
' border: 1px solid black;', |
|
' }', |
|
' th {', |
|
' cursor: pointer;', |
|
' }', |
|
' th, td {', |
|
' text-align: left;', |
|
' vertical-align: middle;', |
|
' border-collapse: collapse;', |
|
' border: 0.5px solid black;', |
|
' padding: 8px;', |
|
' }', |
|
' tr:nth-child(even) {', |
|
' background-color: #d2d2d2;', |
|
' }', |
|
'</style>', |
|
'</head>', |
|
'', |
|
'<body>', |
|
'', |
|
'<table>', |
|
'<thead>', |
|
'<tr>', |
|
'']) |
|
for idx, name in enumerate(column_name_list): |
|
header += f' <th onclick="sorting(tbody, {idx})">{name}</th>\n' |
|
header += '</tr>\n' |
|
header += '</thead>\n' |
|
header += '<tbody id="tbody">\n' |
|
|
|
return header |
|
|
|
|
|
def get_sortable_html_footer(): |
|
"""Gets footer for sortable html page. |
|
|
|
Check function `get_sortable_html_header()` for more details. |
|
""" |
|
return '</tbody>\n</table>\n\n</body>\n</html>\n' |
|
|
|
|
|
def encode_image_to_html_str(image, image_size=None): |
|
"""Encodes an image to html language. |
|
|
|
NOTE: Input image is always assumed to be with `RGB` channel order. |
|
|
|
Args: |
|
image: The input image to encode. Should be with `RGB` channel order. |
|
image_size: This field is used to resize the image before encoding. `0` |
|
disables resizing. (default: None) |
|
|
|
Returns: |
|
A string which represents the encoded image. |
|
""" |
|
if image is None: |
|
return '' |
|
|
|
assert image.ndim == 3 and image.shape[2] in [1, 3] |
|
|
|
|
|
image = image[:, :, ::-1] |
|
|
|
|
|
width, height = parse_image_size(image_size) |
|
if height or width: |
|
height = height or image.shape[0] |
|
width = width or image.shape[1] |
|
image = cv2.resize(image, (width, height)) |
|
|
|
|
|
encoded_image = cv2.imencode('.jpg', image)[1].tostring() |
|
encoded_image_base64 = base64.b64encode(encoded_image).decode('utf-8') |
|
html_str = f'<img src="data:image/jpeg;base64, {encoded_image_base64}"/>' |
|
|
|
return html_str |
|
|
|
|
|
def decode_html_str_to_image(html_str, image_size=None): |
|
"""Decodes image from html. |
|
|
|
Args: |
|
html_str: Image string parsed from html. |
|
image_size: This field is used to resize the image after decoding. `0` |
|
disables resizing. (default: None) |
|
|
|
Returns: |
|
An image with `RGB` channel order. |
|
""" |
|
if not html_str: |
|
return None |
|
|
|
assert isinstance(html_str, str) |
|
image_str = html_str.split(',')[-1] |
|
encoded_image = base64.b64decode(image_str) |
|
encoded_image_numpy = np.frombuffer(encoded_image, dtype=np.uint8) |
|
image = cv2.imdecode(encoded_image_numpy, flags=cv2.IMREAD_COLOR) |
|
|
|
|
|
width, height = parse_image_size(image_size) |
|
if height or width: |
|
height = height or image.shape[0] |
|
width = width or image.shape[1] |
|
image = cv2.resize(image, (width, height)) |
|
|
|
return image[:, :, ::-1] |
|
|
|
|
|
class HtmlPageVisualizer(object): |
|
"""Defines the html page visualizer. |
|
|
|
This class can be used to visualize image results as html page. Basically, |
|
it is based on an html-format sorted table with helper functions |
|
`get_sortable_html_header()`, `get_sortable_html_footer()`, and |
|
`encode_image_to_html_str()`. To simplify the usage, specifying the |
|
following fields are enough to create a visualization page: |
|
|
|
(1) num_rows: Number of rows of the table (header-row exclusive). |
|
(2) num_cols: Number of columns of the table. |
|
(3) header contents (optional): Title of each column. |
|
|
|
NOTE: `grid_size` can be used to assign `num_rows` and `num_cols` |
|
automatically. |
|
|
|
Example: |
|
|
|
html = HtmlPageVisualizer(num_rows, num_cols) |
|
html.set_headers([...]) |
|
for i in range(num_rows): |
|
for j in range(num_cols): |
|
html.set_cell(i, j, text=..., image=..., highlight=False) |
|
html.save('visualize.html') |
|
""" |
|
|
|
def __init__(self, |
|
num_rows=0, |
|
num_cols=0, |
|
grid_size=0, |
|
is_portrait=True, |
|
viz_size=None): |
|
if grid_size > 0: |
|
num_rows, num_cols = get_grid_shape( |
|
grid_size, row=num_rows, col=num_cols, is_portrait=is_portrait) |
|
assert num_rows > 0 and num_cols > 0 |
|
|
|
self.num_rows = num_rows |
|
self.num_cols = num_cols |
|
self.viz_size = parse_image_size(viz_size) |
|
self.headers = ['' for _ in range(self.num_cols)] |
|
self.cells = [[{ |
|
'text': '', |
|
'image': '', |
|
'highlight': False, |
|
} for _ in range(self.num_cols)] for _ in range(self.num_rows)] |
|
|
|
def set_header(self, col_idx, content): |
|
"""Sets the content of a particular header by column index.""" |
|
self.headers[col_idx] = content |
|
|
|
def set_headers(self, contents): |
|
"""Sets the contents of all headers.""" |
|
if isinstance(contents, str): |
|
contents = [contents] |
|
assert isinstance(contents, (list, tuple)) |
|
assert len(contents) == self.num_cols |
|
for col_idx, content in enumerate(contents): |
|
self.set_header(col_idx, content) |
|
|
|
def set_cell(self, row_idx, col_idx, text='', image=None, highlight=False): |
|
"""Sets the content of a particular cell. |
|
|
|
Basically, a cell contains some text as well as an image. Both text and |
|
image can be empty. |
|
|
|
Args: |
|
row_idx: Row index of the cell to edit. |
|
col_idx: Column index of the cell to edit. |
|
text: Text to add into the target cell. (default: None) |
|
image: Image to show in the target cell. Should be with `RGB` |
|
channel order. (default: None) |
|
highlight: Whether to highlight this cell. (default: False) |
|
""" |
|
self.cells[row_idx][col_idx]['text'] = text |
|
self.cells[row_idx][col_idx]['image'] = encode_image_to_html_str( |
|
image, self.viz_size) |
|
self.cells[row_idx][col_idx]['highlight'] = bool(highlight) |
|
|
|
def save(self, save_path): |
|
"""Saves the html page.""" |
|
html = '' |
|
for i in range(self.num_rows): |
|
html += f'<tr>\n' |
|
for j in range(self.num_cols): |
|
text = self.cells[i][j]['text'] |
|
image = self.cells[i][j]['image'] |
|
if self.cells[i][j]['highlight']: |
|
color = ' bgcolor="#FF8888"' |
|
else: |
|
color = '' |
|
if text: |
|
html += f' <td{color}>{text}<br><br>{image}</td>\n' |
|
else: |
|
html += f' <td{color}>{image}</td>\n' |
|
html += f'</tr>\n' |
|
|
|
header = get_sortable_html_header(self.headers) |
|
footer = get_sortable_html_footer() |
|
|
|
with open(save_path, 'w') as f: |
|
f.write(header + html + footer) |
|
|
|
|
|
class HtmlPageReader(object): |
|
"""Defines the html page reader. |
|
|
|
This class can be used to parse results from the visualization page |
|
generated by `HtmlPageVisualizer`. |
|
|
|
Example: |
|
|
|
html = HtmlPageReader(html_path) |
|
for j in range(html.num_cols): |
|
header = html.get_header(j) |
|
for i in range(html.num_rows): |
|
for j in range(html.num_cols): |
|
text = html.get_text(i, j) |
|
image = html.get_image(i, j, image_size=None) |
|
""" |
|
def __init__(self, html_path): |
|
"""Initializes by loading the content from file.""" |
|
self.html_path = html_path |
|
if not os.path.isfile(html_path): |
|
raise ValueError(f'File `{html_path}` does not exist!') |
|
|
|
|
|
with open(html_path, 'r') as f: |
|
self.html = BeautifulSoup(f, 'html.parser') |
|
|
|
|
|
thead = self.html.find('thead') |
|
headers = thead.findAll('th') |
|
self.headers = [] |
|
for header in headers: |
|
self.headers.append(header.text) |
|
self.num_cols = len(self.headers) |
|
|
|
|
|
tbody = self.html.find('tbody') |
|
rows = tbody.findAll('tr') |
|
self.cells = [] |
|
for row in rows: |
|
cells = row.findAll('td') |
|
self.cells.append([]) |
|
for cell in cells: |
|
self.cells[-1].append({ |
|
'text': cell.text, |
|
'image': cell.find('img')['src'], |
|
}) |
|
assert len(self.cells[-1]) == self.num_cols |
|
self.num_rows = len(self.cells) |
|
|
|
def get_header(self, j): |
|
"""Gets header for a particular column.""" |
|
return self.headers[j] |
|
|
|
def get_text(self, i, j): |
|
"""Gets text from a particular cell.""" |
|
return self.cells[i][j]['text'] |
|
|
|
def get_image(self, i, j, image_size=None): |
|
"""Gets image from a particular cell.""" |
|
return decode_html_str_to_image(self.cells[i][j]['image'], image_size) |
|
|
|
|
|
class VideoReader(object): |
|
"""Defines the video reader. |
|
|
|
This class can be used to read frames from a given video. |
|
""" |
|
|
|
def __init__(self, path): |
|
"""Initializes the video reader by loading the video from disk.""" |
|
if not os.path.isfile(path): |
|
raise ValueError(f'Video `{path}` does not exist!') |
|
|
|
self.path = path |
|
self.video = cv2.VideoCapture(path) |
|
assert self.video.isOpened() |
|
self.position = 0 |
|
|
|
self.length = int(self.video.get(cv2.CAP_PROP_FRAME_COUNT)) |
|
self.frame_height = int(self.video.get(cv2.CAP_PROP_FRAME_HEIGHT)) |
|
self.frame_width = int(self.video.get(cv2.CAP_PROP_FRAME_WIDTH)) |
|
self.fps = self.video.get(cv2.CAP_PROP_FPS) |
|
|
|
def __del__(self): |
|
"""Releases the opened video.""" |
|
self.video.release() |
|
|
|
def read(self, position=None): |
|
"""Reads a certain frame. |
|
|
|
NOTE: The returned frame is assumed to be with `RGB` channel order. |
|
|
|
Args: |
|
position: Optional. If set, the reader will read frames from the |
|
exact position. Otherwise, the reader will read next frames. |
|
(default: None) |
|
""" |
|
if position is not None and position < self.length: |
|
self.video.set(cv2.CAP_PROP_POS_FRAMES, position) |
|
self.position = position |
|
|
|
success, frame = self.video.read() |
|
self.position = self.position + 1 |
|
|
|
return frame[:, :, ::-1] if success else None |
|
|
|
|
|
class VideoWriter(object): |
|
"""Defines the video writer. |
|
|
|
This class can be used to create a video. |
|
|
|
NOTE: `.avi` and `DIVX` is the most recommended codec format since it does |
|
not rely on other dependencies. |
|
""" |
|
|
|
def __init__(self, path, frame_height, frame_width, fps=24, codec='DIVX'): |
|
"""Creates the video writer.""" |
|
self.path = path |
|
self.frame_height = frame_height |
|
self.frame_width = frame_width |
|
self.fps = fps |
|
self.codec = codec |
|
|
|
self.video = cv2.VideoWriter(filename=path, |
|
fourcc=cv2.VideoWriter_fourcc(*codec), |
|
fps=fps, |
|
frameSize=(frame_width, frame_height)) |
|
|
|
def __del__(self): |
|
"""Releases the opened video.""" |
|
self.video.release() |
|
|
|
def write(self, frame): |
|
"""Writes a target frame. |
|
|
|
NOTE: The input frame is assumed to be with `RGB` channel order. |
|
""" |
|
self.video.write(frame[:, :, ::-1]) |
|
|