update
Browse files- .gitignore +2 -0
- Dockerfile +3 -0
- app.py +124 -204
- requirements.txt +1 -0
- test.py +60 -12
.gitignore
CHANGED
@@ -1,2 +1,4 @@
|
|
1 |
*.pyc
|
2 |
*.pth
|
|
|
|
|
|
1 |
*.pyc
|
2 |
*.pth
|
3 |
+
*.whl
|
4 |
+
*.mp4
|
Dockerfile
CHANGED
@@ -38,6 +38,9 @@ RUN pip install --no-cache-dir --upgrade -r requirements.txt
|
|
38 |
|
39 |
RUN wget https://www.dropbox.com/scl/fi/105qy7mkqfjcmnfd3tmv0/edit.pth?rlkey=qcd67cdrqz4jra0p3er966iuk -O clevr.pth
|
40 |
|
|
|
|
|
|
|
41 |
ENV TORCH_EXTENSIONS_DIR=/home/user/.cache
|
42 |
|
43 |
|
|
|
38 |
|
39 |
RUN wget https://www.dropbox.com/scl/fi/105qy7mkqfjcmnfd3tmv0/edit.pth?rlkey=qcd67cdrqz4jra0p3er966iuk -O clevr.pth
|
40 |
|
41 |
+
RUN wget https://www.dropbox.com/scl/fi/k5qc5y5rmhuru5eztegbn/gradio_draggable-0.0.1-py3-none-any.whl
|
42 |
+
RUN pip install gradio_draggable-0.0.1-py3-none-any.whl
|
43 |
+
|
44 |
ENV TORCH_EXTENSIONS_DIR=/home/user/.cache
|
45 |
|
46 |
|
app.py
CHANGED
@@ -1,17 +1,20 @@
|
|
1 |
-
print('start!', flush=True)
|
2 |
import gradio as gr
|
3 |
from models import build_model
|
4 |
from PIL import Image
|
5 |
import numpy as np
|
6 |
import torchvision
|
|
|
7 |
import ninja
|
8 |
import torch
|
9 |
from tqdm import trange
|
10 |
import imageio
|
11 |
import requests
|
12 |
import argparse
|
|
|
|
|
|
|
|
|
13 |
|
14 |
-
print('load!', flush=True)
|
15 |
checkpoint = 'clevr.pth'
|
16 |
state = torch.load(checkpoint, map_location='cpu')
|
17 |
G = build_model(**state['model_kwargs_init']['generator_smooth'])
|
@@ -23,7 +26,25 @@ G_kwargs= dict(noise_mode='const',
|
|
23 |
fused_modulate=False,
|
24 |
impl='cuda',
|
25 |
fp16_res=None)
|
26 |
-
print('
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
|
28 |
def trans(x, y, z, length):
|
29 |
w = h = length
|
@@ -31,8 +52,29 @@ def trans(x, y, z, length):
|
|
31 |
y = 0.5 * h - 128 + (y/9 + .5) * 256
|
32 |
z = z / 9 * 256
|
33 |
return x, y, z
|
34 |
-
|
35 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
nc = 14
|
37 |
canvas = np.zeros([h, w, nc])
|
38 |
xx = np.ones([h,w]).cumsum(0)
|
@@ -57,216 +99,94 @@ def get_bev_from_objs(objs, length=256, scale = 6):
|
|
57 |
mask = ((xx-x)**2 + (y-yy)**2) ** 0.5 <= z
|
58 |
canvas[mask] = feat
|
59 |
canvas = np.transpose(canvas, [2, 0, 1]).astype(np.float32)
|
60 |
-
rotate_angle = 0
|
61 |
-
canvas = torchvision.transforms.functional.rotate(torch.tensor(canvas), rotate_angle).numpy()
|
62 |
return canvas
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
xy_lib = dict()
|
70 |
-
xy_lib['B'] = [
|
71 |
-
[-2, -1],
|
72 |
-
[-1, -1],
|
73 |
-
[-2, 0],
|
74 |
-
[-2, 1],
|
75 |
-
[-1, .5],
|
76 |
-
[0, 1],
|
77 |
-
[0, 0],
|
78 |
-
[0, -1],
|
79 |
-
[0, 2],
|
80 |
-
[-1, 2],
|
81 |
-
[-2, 2]
|
82 |
-
]
|
83 |
-
xy_lib['B'] = [
|
84 |
-
[-2.5, 1.25],
|
85 |
-
[-2, 2],
|
86 |
-
[-2, 0.5],
|
87 |
-
[-2, -0.75],
|
88 |
-
[-1, -1],
|
89 |
-
[-1, 2],
|
90 |
-
[-1, 0],
|
91 |
-
[-1, 2],
|
92 |
-
[0, 1],
|
93 |
-
[0, 0],
|
94 |
-
[0, -1],
|
95 |
-
[0, 2],
|
96 |
-
# [-1, 2],
|
97 |
-
|
98 |
-
]
|
99 |
-
xy_lib['B'] = [
|
100 |
-
[-2.5, 1.25],
|
101 |
-
[-2, 2],
|
102 |
-
[-2, 0.5],
|
103 |
-
[-2, -1],
|
104 |
-
[-1, -1.25],
|
105 |
-
[-1, 2],
|
106 |
-
[-1, 0],
|
107 |
-
[-1, 2],
|
108 |
-
[0, 1],
|
109 |
-
[0, 0],
|
110 |
-
[0, -1.25],
|
111 |
-
[0, 2],
|
112 |
-
# [-1, 2],
|
113 |
-
|
114 |
-
]
|
115 |
-
xy_lib['R'] = [
|
116 |
-
[0, -1],
|
117 |
-
[0, 0],
|
118 |
-
[0, 1],
|
119 |
-
[0, 2],
|
120 |
-
[-1, -1],
|
121 |
-
# [-1, 2],
|
122 |
-
[-2, -1],
|
123 |
-
[-2, 0],
|
124 |
-
[-2.25, 2],
|
125 |
-
[-1, 1]
|
126 |
-
]
|
127 |
-
xy_lib['C'] = [
|
128 |
-
[0, -1],
|
129 |
-
[0, 0],
|
130 |
-
[0, 1],
|
131 |
-
[0, 2],
|
132 |
-
[-1, -1],
|
133 |
-
[-1, 2],
|
134 |
-
[-2, -1],
|
135 |
-
# [-2, .5],
|
136 |
-
[-2, 2],
|
137 |
-
# [-1, .5]
|
138 |
-
]
|
139 |
-
xy_lib['s'] = [
|
140 |
-
[0, -1],
|
141 |
-
[0, 0],
|
142 |
-
[0, 2],
|
143 |
-
[-1, -1],
|
144 |
-
[-1, 2],
|
145 |
-
[-2, -1],
|
146 |
-
[-2, 1],
|
147 |
-
[-2, 2],
|
148 |
-
[-1, .5]
|
149 |
-
]
|
150 |
-
|
151 |
-
xy_lib['F'] = [
|
152 |
-
[0, -1],
|
153 |
-
[0, 0],
|
154 |
-
[0, 1],
|
155 |
-
[0, 2],
|
156 |
-
[-1, -1],
|
157 |
-
# [-1, 2],
|
158 |
-
[-2, -1],
|
159 |
-
[-2, .5],
|
160 |
-
# [-2, 2],
|
161 |
-
[-1, .5]
|
162 |
-
]
|
163 |
-
|
164 |
-
xy_lib['c'] = [
|
165 |
-
[0.8,1],
|
166 |
-
# [-0.8,1],
|
167 |
-
[0,0.1],
|
168 |
-
[0,1.9],
|
169 |
-
]
|
170 |
-
|
171 |
-
xy_lib['e'] = [
|
172 |
-
[0, -1],
|
173 |
-
[0, 0],
|
174 |
-
[0, 1],
|
175 |
-
[0, 2],
|
176 |
-
[-1, -1],
|
177 |
-
[-1, 2],
|
178 |
-
[-2, -1],
|
179 |
-
[-2, .5],
|
180 |
-
[-2, 2],
|
181 |
-
[-1, .5]
|
182 |
-
]
|
183 |
-
xy_lib['n'] = [
|
184 |
-
[0,1],
|
185 |
-
[0,-1],
|
186 |
-
[0,0.1],
|
187 |
-
[0,1.9],
|
188 |
-
[-1,0],
|
189 |
-
[-2,1],
|
190 |
-
[-3,-1],
|
191 |
-
[-3,1],
|
192 |
-
[-3,0.1],
|
193 |
-
[-3,1.9],
|
194 |
-
]
|
195 |
-
offset_x = dict(B=4, R=4, C=4, F=4, c=3, s=4, e=4, n=4.8)
|
196 |
-
s = 'BeRFsCene'
|
197 |
-
objs = []
|
198 |
-
offset = 2
|
199 |
-
for idx, c in enumerate(s):
|
200 |
-
xy = xy_lib[c]
|
201 |
-
|
202 |
-
|
203 |
-
color = np.random.choice(COLOR_NAME_LIST)
|
204 |
-
for i in range(len(xy)):
|
205 |
-
# while 1:
|
206 |
-
# is_ok = 1
|
207 |
-
# x, y =
|
208 |
-
|
209 |
-
# for prev_x, prev_y in zip(xpool, ypool):
|
210 |
-
x, y = xy[i]
|
211 |
-
y *= 1.5
|
212 |
-
y -= 0.5
|
213 |
-
x -= offset
|
214 |
-
z = 0.35
|
215 |
-
# if idx<4:
|
216 |
-
# color = np.random.choice(COLOR_NAME_LIST[:-1])
|
217 |
-
# else:
|
218 |
-
# color = 'blue'
|
219 |
-
shape = 'cube'
|
220 |
-
material = 'rubber'
|
221 |
-
rot = 0
|
222 |
-
objs.append([x, y, z, shape, color, material, rot])
|
223 |
-
offset += offset_x[c]
|
224 |
-
Image.fromarray((255 * .8 - get_bev_from_objs(objs)[0] *.8 * 255).astype(np.uint8))
|
225 |
-
|
226 |
-
batch_size = 1
|
227 |
-
code = torch.randn(1, G.z_dim).cuda()
|
228 |
-
to_pil = torchvision.transforms.ToPILImage()
|
229 |
-
large_bevs = torch.tensor(get_bev_from_objs(objs)).cuda()[None]
|
230 |
-
bevs = large_bevs[..., 0: 0+256]
|
231 |
-
RT = torch.tensor([[ -1.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.5000, -0.8660,
|
232 |
-
10.3923, 0.0000, -0.8660, -0.5000, 6.0000, 0.0000, 0.0000,
|
233 |
-
0.0000, 1.0000, 262.5000, 0.0000, 32.0000, 0.0000, 262.5000,
|
234 |
-
32.0000, 0.0000, 0.0000, 1.0000]], device='cuda')
|
235 |
-
|
236 |
-
print('prepare finish', flush=True)
|
237 |
-
|
238 |
-
def predict(name):
|
239 |
-
print('inference', name, flush=True)
|
240 |
gen = G(code, RT, bevs)
|
241 |
rgb = gen['gen_output']['image'][0] * .5 + .5
|
242 |
-
print('inference', name, flush=True)
|
243 |
return to_pil(rgb)
|
244 |
|
245 |
-
|
246 |
-
|
247 |
-
|
248 |
-
|
249 |
-
|
250 |
-
|
251 |
-
|
252 |
-
|
253 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
254 |
|
255 |
with gr.Blocks() as demo:
|
256 |
-
gr.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
257 |
"""
|
258 |
-
|
259 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
260 |
|
261 |
-
# gallery = gr.Image(show_label=False)
|
262 |
-
image = gr.Image(show_label=False)
|
263 |
-
btn = gr.Button("Result")
|
264 |
|
265 |
-
|
266 |
-
|
267 |
-
|
268 |
|
269 |
-
# btn.click(fn=predict, inputs=num_frames, outputs=gallery, postprocess=False)
|
270 |
|
271 |
parser = argparse.ArgumentParser()
|
272 |
parser.add_argument('--port', type=int, help='The port number', default=7860)
|
|
|
|
|
1 |
import gradio as gr
|
2 |
from models import build_model
|
3 |
from PIL import Image
|
4 |
import numpy as np
|
5 |
import torchvision
|
6 |
+
import math
|
7 |
import ninja
|
8 |
import torch
|
9 |
from tqdm import trange
|
10 |
import imageio
|
11 |
import requests
|
12 |
import argparse
|
13 |
+
import imageio
|
14 |
+
from scipy.spatial.transform import Rotation
|
15 |
+
|
16 |
+
from gradio_draggable import Draggable
|
17 |
|
|
|
18 |
checkpoint = 'clevr.pth'
|
19 |
state = torch.load(checkpoint, map_location='cpu')
|
20 |
G = build_model(**state['model_kwargs_init']['generator_smooth'])
|
|
|
26 |
fused_modulate=False,
|
27 |
impl='cuda',
|
28 |
fp16_res=None)
|
29 |
+
print('prepare finish', flush=True)
|
30 |
+
|
31 |
+
|
32 |
+
COLOR_NAME_LIST = ['cyan', 'green', 'purple', 'red', 'yellow', 'gray', 'purple', 'blue']
|
33 |
+
SHAPE_NAME_LIST = ['cube', 'sphere', 'cylinder']
|
34 |
+
MATERIAL_NAME_LIST = ['rubber', 'metal']
|
35 |
+
|
36 |
+
canvas_x = 800
|
37 |
+
canvas_y = 200
|
38 |
+
batch_size = 1
|
39 |
+
code = torch.randn(1, G.z_dim).cuda()
|
40 |
+
to_pil = torchvision.transforms.ToPILImage()
|
41 |
+
|
42 |
+
RT = torch.tensor([[ -1.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.5000, -0.8660,
|
43 |
+
10.3923, 0.0000, -0.8660, -0.5000, 6.0000, 0.0000, 0.0000,
|
44 |
+
0.0000, 1.0000, 262.5000, 0.0000, 32.0000, 0.0000, 262.5000,
|
45 |
+
32.0000, 0.0000, 0.0000, 1.0000]], device='cuda')
|
46 |
+
|
47 |
+
obj_dict = {}
|
48 |
|
49 |
def trans(x, y, z, length):
|
50 |
w = h = length
|
|
|
52 |
y = 0.5 * h - 128 + (y/9 + .5) * 256
|
53 |
z = z / 9 * 256
|
54 |
return x, y, z
|
55 |
+
|
56 |
+
def objs_to_canvas(lst, length=256, scale = 2.6):
|
57 |
+
objs = []
|
58 |
+
for each in lst:
|
59 |
+
x, y, obj_id = each['x'], each['y'], each['id']
|
60 |
+
|
61 |
+
if obj_id not in obj_dict:
|
62 |
+
color = np.random.choice(COLOR_NAME_LIST)
|
63 |
+
shape = 'cube'
|
64 |
+
material = 'rubber'
|
65 |
+
rot = 0
|
66 |
+
obj_dict[obj_id] = [color, shape, material, rot]
|
67 |
+
|
68 |
+
color, shape, material, rot = obj_dict[obj_id]
|
69 |
+
x = -x / canvas_x * 16
|
70 |
+
y = y / canvas_y * 2
|
71 |
+
y *= 2
|
72 |
+
x += 1.0
|
73 |
+
y -= 1.5
|
74 |
+
z = 0.35
|
75 |
+
objs.append([x, y, z, shape, color, material, rot])
|
76 |
+
|
77 |
+
h, w = length, int(length *scale)
|
78 |
nc = 14
|
79 |
canvas = np.zeros([h, w, nc])
|
80 |
xx = np.ones([h,w]).cumsum(0)
|
|
|
99 |
mask = ((xx-x)**2 + (y-yy)**2) ** 0.5 <= z
|
100 |
canvas[mask] = feat
|
101 |
canvas = np.transpose(canvas, [2, 0, 1]).astype(np.float32)
|
|
|
|
|
102 |
return canvas
|
103 |
+
|
104 |
+
@torch.no_grad()
|
105 |
+
def predict_local_view(lst):
|
106 |
+
canvas = torch.tensor(objs_to_canvas(lst)).cuda()[None]
|
107 |
+
bevs = canvas[..., 0: 0+256]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
108 |
gen = G(code, RT, bevs)
|
109 |
rgb = gen['gen_output']['image'][0] * .5 + .5
|
|
|
110 |
return to_pil(rgb)
|
111 |
|
112 |
+
@torch.no_grad()
|
113 |
+
def predict_local_view_video(lst):
|
114 |
+
canvas = torch.tensor(objs_to_canvas(lst)).cuda()[None]
|
115 |
+
bevs = canvas[..., 0: 0+256]
|
116 |
+
RT_array = np.array(RT[0].cpu())
|
117 |
+
rot = RT_array[:16].reshape(4,4)
|
118 |
+
trans = RT_array[16:]
|
119 |
+
rot_new = rot.copy()
|
120 |
+
r = Rotation.from_matrix(rot[:3, :3])
|
121 |
+
angles = r.as_euler("zyx",degrees=True)
|
122 |
+
v_mean, h_mean = angles[1], angles[2]
|
123 |
+
|
124 |
+
writer = imageio.get_writer('tmp.mp4', fps=25)
|
125 |
+
for t in np.linspace(0, 1, 50):
|
126 |
+
angles[1] = 0.5 * np.cos(t * 2 * math.pi) + v_mean
|
127 |
+
angles[2] = 1 * np.sin(t * 2 * math.pi) + h_mean
|
128 |
+
r = Rotation.from_euler("zyx",angles,degrees=True)
|
129 |
+
rot_new[:3,:3] = r.as_matrix()
|
130 |
+
new_RT = torch.tensor(np.concatenate([rot_new.flatten(), trans])[None]).cuda().float()
|
131 |
+
gen = G(code, new_RT, bevs)
|
132 |
+
rgb = gen['gen_output']['image'][0] * .5 + .5
|
133 |
+
writer.append_data(np.array(to_pil(rgb)))
|
134 |
+
writer.close()
|
135 |
+
return 'tmp.mp4'
|
136 |
+
|
137 |
+
@torch.no_grad()
|
138 |
+
def predict_global_view(lst):
|
139 |
+
canvas = torch.tensor(objs_to_canvas(lst)).cuda()[None]
|
140 |
+
length = canvas.shape[-1]
|
141 |
+
lines = []
|
142 |
+
for i in trange(0, length - 256, 10):
|
143 |
+
bevs = canvas[..., i: i+256]
|
144 |
+
gen = G(code, RT, bevs)
|
145 |
+
start = 128 if i > 0 else 0
|
146 |
+
lines.append(gen['gen_output']['image'][0, ..., start:128+32])
|
147 |
+
rgb = torch.cat(lines, 2)*.5+.5
|
148 |
+
return to_pil(rgb)
|
149 |
|
150 |
with gr.Blocks() as demo:
|
151 |
+
gr.Markdown(
|
152 |
+
"""
|
153 |
+
# BerfScene: Bev-conditioned Equivariant Radiance Fields for Infinite 3D Scene Generation
|
154 |
+
Qihang Zhang, Yinghao Xu, Yujun Shen, Bo Dai, Bolei Zhou*, Ceyuan Yang* (*Corresponding Author)<br>
|
155 |
+
[Arxiv Report](https://arxiv.org/abs/2312.02136) | [Project Page](https://zqh0253.github.io/BerfScene/) | [Github](https://github.com/zqh0253/BerfScene)
|
156 |
+
"""
|
157 |
+
)
|
158 |
+
|
159 |
+
gr.Markdown(
|
160 |
"""
|
161 |
+
### Quick Start
|
162 |
+
1. Drag and place objects in the canvas.
|
163 |
+
2. Click `Add object` to insert object into the canvas.
|
164 |
+
3. Click `Reset` to clean the canvas.
|
165 |
+
4. Click `Get local view` to synthesize local 3D scenes.
|
166 |
+
5. Click `Get global view` to synthesize global 3D scenes.
|
167 |
+
"""
|
168 |
+
)
|
169 |
+
|
170 |
+
with gr.Row():
|
171 |
+
with gr.Column():
|
172 |
+
|
173 |
+
drag = Draggable()
|
174 |
+
with gr.Row():
|
175 |
+
submit_btn_local = gr.Button("Get local view", variant='primary')
|
176 |
+
submit_btn_global = gr.Button("Get global view", variant='primary')
|
177 |
+
|
178 |
+
with gr.Column():
|
179 |
+
with gr.Row():
|
180 |
+
single_view_image = gr.Image(label='single view', interactive=False)
|
181 |
+
single_view_video = gr.Video(label='mutli-view', interactive=False, autoplay=True)
|
182 |
+
|
183 |
+
global_view_image = gr.Image(label='global view', interactive=False)
|
184 |
|
|
|
|
|
|
|
185 |
|
186 |
+
submit_btn_local.click(fn=predict_local_view, inputs=drag, outputs=single_view_image)
|
187 |
+
submit_btn_local.click(fn=predict_local_view_video, inputs=drag, outputs=single_view_video)
|
188 |
+
submit_btn_global.click(fn=predict_global_view, inputs=drag, outputs=global_view_image)
|
189 |
|
|
|
190 |
|
191 |
parser = argparse.ArgumentParser()
|
192 |
parser.add_argument('--port', type=int, help='The port number', default=7860)
|
requirements.txt
CHANGED
@@ -19,4 +19,5 @@ lmdb
|
|
19 |
matplotlib
|
20 |
einops
|
21 |
imageio
|
|
|
22 |
gradio
|
|
|
19 |
matplotlib
|
20 |
einops
|
21 |
imageio
|
22 |
+
imageio-ffmpeg
|
23 |
gradio
|
test.py
CHANGED
@@ -1,18 +1,66 @@
|
|
1 |
import gradio as gr
|
2 |
-
import requests
|
3 |
-
from PIL import Image
|
4 |
-
URL = "https://source.unsplash.com/random/500x500/?nature,fruit"
|
5 |
|
|
|
|
|
|
|
6 |
|
7 |
-
|
8 |
-
|
9 |
-
return image
|
10 |
|
|
|
|
|
|
|
|
|
11 |
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
show_progress=False, every=1)
|
16 |
|
17 |
-
|
18 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
|
|
|
|
|
|
2 |
|
3 |
+
def update_position(data):
|
4 |
+
# data will be the position of the rectangle, expected to be a JSON string
|
5 |
+
return data # Here you can parse and use the position data as needed
|
6 |
|
7 |
+
html_code = """
|
8 |
+
<div id="canvas-container"></div>
|
|
|
9 |
|
10 |
+
<script>
|
11 |
+
document.getElementById('canvas-container').innerHTML = `
|
12 |
+
<canvas id="canvas" width="500" height="500"></canvas>
|
13 |
+
`;
|
14 |
|
15 |
+
const canvas = document.getElementById('canvas');
|
16 |
+
const ctx = canvas.getContext('2d');
|
17 |
+
const rect = { x: 50, y: 50, width: 100, height: 50, isDragging: false };
|
|
|
18 |
|
19 |
+
function draw() {
|
20 |
+
ctx.clearRect(0, 0, canvas.width, canvas.height);
|
21 |
+
ctx.fillStyle = 'blue';
|
22 |
+
ctx.fillRect(rect.x, rect.y, rect.width, rect.height);
|
23 |
+
}
|
24 |
+
|
25 |
+
function sendData() {
|
26 |
+
GradioApp.send({x: rect.x, y: rect.y});
|
27 |
+
}
|
28 |
+
|
29 |
+
function mouseDown(e) {
|
30 |
+
if (e.offsetX >= rect.x && e.offsetX <= rect.x + rect.width &&
|
31 |
+
e.offsetY >= rect.y && e.offsetY <= rect.y + rect.height) {
|
32 |
+
rect.isDragging = true;
|
33 |
+
}
|
34 |
+
}
|
35 |
+
|
36 |
+
function mouseMove(e) {
|
37 |
+
if (rect.isDragging) {
|
38 |
+
rect.x = e.offsetX - rect.width / 2;
|
39 |
+
rect.y = e.offsetY - rect.height / 2;
|
40 |
+
draw();
|
41 |
+
sendData();
|
42 |
+
}
|
43 |
+
}
|
44 |
+
|
45 |
+
function mouseUp() {
|
46 |
+
rect.isDragging = false;
|
47 |
+
sendData();
|
48 |
+
}
|
49 |
+
|
50 |
+
canvas.addEventListener('mousedown', mouseDown);
|
51 |
+
canvas.addEventListener('mousemove', mouseMove);
|
52 |
+
canvas.addEventListener('mouseup', mouseUp);
|
53 |
+
|
54 |
+
draw();
|
55 |
+
</script>
|
56 |
+
"""
|
57 |
+
|
58 |
+
interface = gr.Interface(
|
59 |
+
fn=update_position,
|
60 |
+
inputs=gr.HTML(),
|
61 |
+
outputs="json",
|
62 |
+
allow_flagging="never",
|
63 |
+
live=True
|
64 |
+
)
|
65 |
+
|
66 |
+
interface.launch(server_name='0.0.0.0', server_port=7860)
|