fdisk commited on
Commit
61f4e5e
·
1 Parent(s): 3b191f7

1. 평가점수 0 은 평가 없음으로 처리한다. 2. 컬럼정리 및 순번 추가 3. About 페이지

Browse files
Files changed (4) hide show
  1. app.py +6 -3
  2. src/about.py +13 -4
  3. src/display/utils.py +0 -134
  4. src/leaderboard/read_evals.py +0 -196
app.py CHANGED
@@ -14,7 +14,12 @@ def get_evaluation():
14
  response = requests.get("http://aim100.qinference.com/api/leaderboard/list")
15
  data_json = response.json()
16
  df = pd.DataFrame(data_json)
17
- return df
 
 
 
 
 
18
 
19
 
20
  leaderboard = gr.Blocks(css=custom_css)
@@ -24,8 +29,6 @@ with leaderboard:
24
 
25
  with gr.Tabs(elem_classes="tab-buttons") as tabs:
26
  with gr.TabItem("🏅 LLM Benchmark", elem_id="llm-benchmark-tab-table", id=0):
27
- # df = get_evaluation()
28
- # dataList = get_evaluation()
29
  leaderboard_table = gr.components.Dataframe(
30
  value=get_evaluation(),
31
  elem_id="leaderboard-table",
 
14
  response = requests.get("http://aim100.qinference.com/api/leaderboard/list")
15
  data_json = response.json()
16
  df = pd.DataFrame(data_json)
17
+ for col in df.columns:
18
+ df.loc[df[col] == 0, col] = '-'
19
+ df.insert(0, 'No', df.reset_index().index + 1)
20
+ ret = df.drop(columns='nodeSeq').rename(columns={'modelName': 'Model'})
21
+ ret.columns = [x.capitalize() for x in ret.columns]
22
+ return ret
23
 
24
 
25
  leaderboard = gr.Blocks(css=custom_css)
 
29
 
30
  with gr.Tabs(elem_classes="tab-buttons") as tabs:
31
  with gr.TabItem("🏅 LLM Benchmark", elem_id="llm-benchmark-tab-table", id=0):
 
 
32
  leaderboard_table = gr.components.Dataframe(
33
  value=get_evaluation(),
34
  elem_id="leaderboard-table",
src/about.py CHANGED
@@ -26,15 +26,24 @@ TITLE = """<h1 align="center" id="space-title">AIM100 Leaderboard</h1>"""
26
  # What does your leaderboard evaluate?
27
  INTRODUCTION_TEXT = """
28
  Leaderboard of AIM100
29
- (AI Model 1 vs 100 Colosseum)
30
  """
31
 
32
  # Which evaluations are you running? how can people reproduce what you have?
33
  LLM_BENCHMARKS_TEXT = f"""
34
- ## How it works
 
35
 
36
- ## Reproducibility
37
- To reproduce our results, here is the commands you can run:
 
 
 
 
 
 
 
 
 
38
 
39
  """
40
 
 
26
  # What does your leaderboard evaluate?
27
  INTRODUCTION_TEXT = """
28
  Leaderboard of AIM100
 
29
  """
30
 
31
  # Which evaluations are you running? how can people reproduce what you have?
32
  LLM_BENCHMARKS_TEXT = f"""
33
+ ## 🔥 About This Leaderboard
34
+ This leaderboard is based on evaluations made in **AIM100**.
35
 
36
+ You can play with chatbot colosseum in **AIM100**.
37
+
38
+
39
+ ## 🎢 About AIM100 Colosseum
40
+ http://aim100.qinference.com
41
+
42
+ AIM100 is a playground with over 100 LLM chatbot.
43
+ It is like a colosseum that concept by 1 vs 100 battle.
44
+ Anyone can play with hundreds chatbots.
45
+
46
+ See around and enjoy!
47
 
48
  """
49
 
src/display/utils.py DELETED
@@ -1,134 +0,0 @@
1
- from dataclasses import dataclass, make_dataclass
2
- from enum import Enum
3
-
4
- import pandas as pd
5
-
6
- from src.about import Tasks
7
-
8
-
9
- def fields(raw_class):
10
- return [v for k, v in raw_class.__dict__.items() if k[:2] != "__" and k[-2:] != "__"]
11
-
12
-
13
- # These classes are for user facing column names,
14
- # to avoid having to change them all around the code
15
- # when a modif is needed
16
- @dataclass
17
- class ColumnContent:
18
- name: str
19
- type: str
20
- displayed_by_default: bool
21
- hidden: bool = False
22
- never_hidden: bool = False
23
-
24
-
25
- ## Leaderboard columns
26
- auto_eval_column_dict = [["modelName", ColumnContent, ColumnContent("Model", "markdown", True, never_hidden=True)],
27
- ["total", ColumnContent, ColumnContent("Average ⬆️", "number", True)],
28
- ["inference", ColumnContent, ColumnContent("Architecture", "str", False)],
29
- ["grammar", ColumnContent, ColumnContent("Grammar", "number", False, True)],
30
- ["understanding", ColumnContent, ColumnContent("Understanding", "number", False)],
31
- ["coding", ColumnContent, ColumnContent("Coding", "number", False)],
32
- ["math", ColumnContent, ColumnContent("Math", "number", False)],
33
- ["writing", ColumnContent, ColumnContent("Write", "number", False)],
34
- ["etc", ColumnContent, ColumnContent("ETC", "number", False)]]
35
- # Init
36
-
37
- # We use make dataclass to dynamically fill the scores from Tasks
38
- AutoEvalColumn = make_dataclass("AutoEvalColumn", auto_eval_column_dict, frozen=True)
39
-
40
-
41
- ## For the queue columns in the submission tab
42
- @dataclass(frozen=True)
43
- class EvalQueueColumn: # Queue column
44
- model = ColumnContent("model", "markdown", True)
45
- revision = ColumnContent("revision", "str", True)
46
- private = ColumnContent("private", "bool", True)
47
- precision = ColumnContent("precision", "str", True)
48
- weight_type = ColumnContent("weight_type", "str", "Original")
49
- status = ColumnContent("status", "str", True)
50
-
51
-
52
- ## All the model information that we might need
53
- @dataclass
54
- class ModelDetails:
55
- name: str
56
- display_name: str = ""
57
- symbol: str = "" # emoji
58
-
59
-
60
- class ModelType(Enum):
61
- PT = ModelDetails(name="pretrained", symbol="🟢")
62
- FT = ModelDetails(name="fine-tuned", symbol="🔶")
63
- IFT = ModelDetails(name="instruction-tuned", symbol="⭕")
64
- RL = ModelDetails(name="RL-tuned", symbol="🟦")
65
- Unknown = ModelDetails(name="", symbol="?")
66
-
67
- def to_str(self, separator=" "):
68
- return f"{self.value.symbol}{separator}{self.value.name}"
69
-
70
- @staticmethod
71
- def from_str(type):
72
- if "fine-tuned" in type or "🔶" in type:
73
- return ModelType.FT
74
- if "pretrained" in type or "🟢" in type:
75
- return ModelType.PT
76
- if "RL-tuned" in type or "🟦" in type:
77
- return ModelType.RL
78
- if "instruction-tuned" in type or "⭕" in type:
79
- return ModelType.IFT
80
- return ModelType.Unknown
81
-
82
-
83
- class WeightType(Enum):
84
- Adapter = ModelDetails("Adapter")
85
- Original = ModelDetails("Original")
86
- Delta = ModelDetails("Delta")
87
-
88
-
89
- class Precision(Enum):
90
- float16 = ModelDetails("float16")
91
- bfloat16 = ModelDetails("bfloat16")
92
- float32 = ModelDetails("float32")
93
- # qt_8bit = ModelDetails("8bit")
94
- # qt_4bit = ModelDetails("4bit")
95
- # qt_GPTQ = ModelDetails("GPTQ")
96
- Unknown = ModelDetails("?")
97
-
98
- def from_str(precision):
99
- if precision in ["torch.float16", "float16"]:
100
- return Precision.float16
101
- if precision in ["torch.bfloat16", "bfloat16"]:
102
- return Precision.bfloat16
103
- if precision in ["float32"]:
104
- return Precision.float32
105
- # if precision in ["8bit"]:
106
- # return Precision.qt_8bit
107
- # if precision in ["4bit"]:
108
- # return Precision.qt_4bit
109
- # if precision in ["GPTQ", "None"]:
110
- # return Precision.qt_GPTQ
111
- return Precision.Unknown
112
-
113
-
114
- # Column selection
115
- COLS = [c.name for c in fields(AutoEvalColumn) if not c.hidden]
116
- TYPES = [c.type for c in fields(AutoEvalColumn) if not c.hidden]
117
- COLS_LITE = [c.name for c in fields(AutoEvalColumn) if c.displayed_by_default and not c.hidden]
118
- TYPES_LITE = [c.type for c in fields(AutoEvalColumn) if c.displayed_by_default and not c.hidden]
119
-
120
- EVAL_COLS = [c.name for c in fields(EvalQueueColumn)]
121
- EVAL_TYPES = [c.type for c in fields(EvalQueueColumn)]
122
-
123
- BENCHMARK_COLS = [t.value.col_name for t in Tasks]
124
-
125
- NUMERIC_INTERVALS = {
126
- "?": pd.Interval(-1, 0, closed="right"),
127
- "~1.5": pd.Interval(0, 2, closed="right"),
128
- "~3": pd.Interval(2, 4, closed="right"),
129
- "~7": pd.Interval(4, 9, closed="right"),
130
- "~13": pd.Interval(9, 20, closed="right"),
131
- "~35": pd.Interval(20, 45, closed="right"),
132
- "~60": pd.Interval(45, 70, closed="right"),
133
- "70+": pd.Interval(70, 10000, closed="right"),
134
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
src/leaderboard/read_evals.py DELETED
@@ -1,196 +0,0 @@
1
- import glob
2
- import json
3
- import math
4
- import os
5
- from dataclasses import dataclass
6
-
7
- import dateutil
8
- import numpy as np
9
-
10
- from src.display.formatting import make_clickable_model
11
- from src.display.utils import AutoEvalColumn, ModelType, Tasks, Precision, WeightType
12
- from src.submission.check_validity import is_model_on_hub
13
-
14
-
15
- @dataclass
16
- class EvalResult:
17
- """Represents one full evaluation. Built from a combination of the result and request file for a given run.
18
- """
19
- eval_name: str # org_model_precision (uid)
20
- full_model: str # org/model (path on hub)
21
- org: str
22
- model: str
23
- revision: str # commit hash, "" if main
24
- results: dict
25
- precision: Precision = Precision.Unknown
26
- model_type: ModelType = ModelType.Unknown # Pretrained, fine tuned, ...
27
- weight_type: WeightType = WeightType.Original # Original or Adapter
28
- architecture: str = "Unknown"
29
- license: str = "?"
30
- likes: int = 0
31
- num_params: int = 0
32
- date: str = "" # submission date of request file
33
- still_on_hub: bool = False
34
-
35
- @classmethod
36
- def init_from_json_file(self, json_filepath):
37
- """Inits the result from the specific model result file"""
38
- with open(json_filepath) as fp:
39
- data = json.load(fp)
40
-
41
- config = data.get("config")
42
-
43
- # Precision
44
- precision = Precision.from_str(config.get("model_dtype"))
45
-
46
- # Get model and org
47
- org_and_model = config.get("model_name", config.get("model_args", None))
48
- org_and_model = org_and_model.split("/", 1)
49
-
50
- if len(org_and_model) == 1:
51
- org = None
52
- model = org_and_model[0]
53
- result_key = f"{model}_{precision.value.name}"
54
- else:
55
- org = org_and_model[0]
56
- model = org_and_model[1]
57
- result_key = f"{org}_{model}_{precision.value.name}"
58
- full_model = "/".join(org_and_model)
59
-
60
- still_on_hub, _, model_config = is_model_on_hub(
61
- full_model, config.get("model_sha", "main"), trust_remote_code=True, test_tokenizer=False
62
- )
63
- architecture = "?"
64
- if model_config is not None:
65
- architectures = getattr(model_config, "architectures", None)
66
- if architectures:
67
- architecture = ";".join(architectures)
68
-
69
- # Extract results available in this file (some results are split in several files)
70
- results = {}
71
- for task in Tasks:
72
- task = task.value
73
-
74
- # We average all scores of a given metric (not all metrics are present in all files)
75
- accs = np.array([v.get(task.metric, None) for k, v in data["results"].items() if task.benchmark == k])
76
- if accs.size == 0 or any([acc is None for acc in accs]):
77
- continue
78
-
79
- mean_acc = np.mean(accs) * 100.0
80
- results[task.benchmark] = mean_acc
81
-
82
- return self(
83
- eval_name=result_key,
84
- full_model=full_model,
85
- org=org,
86
- model=model,
87
- results=results,
88
- precision=precision,
89
- revision= config.get("model_sha", ""),
90
- still_on_hub=still_on_hub,
91
- architecture=architecture
92
- )
93
-
94
- def update_with_request_file(self, requests_path):
95
- """Finds the relevant request file for the current model and updates info with it"""
96
- request_file = get_request_file_for_model(requests_path, self.full_model, self.precision.value.name)
97
-
98
- try:
99
- with open(request_file, "r") as f:
100
- request = json.load(f)
101
- self.model_type = ModelType.from_str(request.get("model_type", ""))
102
- self.weight_type = WeightType[request.get("weight_type", "Original")]
103
- self.license = request.get("license", "?")
104
- self.likes = request.get("likes", 0)
105
- self.num_params = request.get("params", 0)
106
- self.date = request.get("submitted_time", "")
107
- except Exception:
108
- print(f"Could not find request file for {self.org}/{self.model} with precision {self.precision.value.name}")
109
-
110
- def to_dict(self):
111
- """Converts the Eval Result to a dict compatible with our dataframe display"""
112
- average = sum([v for v in self.results.values() if v is not None]) / len(Tasks)
113
- data_dict = {
114
- "eval_name": self.eval_name, # not a column, just a save name,
115
- AutoEvalColumn.precision.name: self.precision.value.name,
116
- AutoEvalColumn.model_type.name: self.model_type.value.name,
117
- AutoEvalColumn.model_type_symbol.name: self.model_type.value.symbol,
118
- AutoEvalColumn.weight_type.name: self.weight_type.value.name,
119
- AutoEvalColumn.architecture.name: self.architecture,
120
- AutoEvalColumn.model.name: make_clickable_model(self.full_model),
121
- AutoEvalColumn.revision.name: self.revision,
122
- AutoEvalColumn.average.name: average,
123
- AutoEvalColumn.license.name: self.license,
124
- AutoEvalColumn.likes.name: self.likes,
125
- AutoEvalColumn.params.name: self.num_params,
126
- AutoEvalColumn.still_on_hub.name: self.still_on_hub,
127
- }
128
-
129
- for task in Tasks:
130
- data_dict[task.value.col_name] = self.results[task.value.benchmark]
131
-
132
- return data_dict
133
-
134
-
135
- def get_request_file_for_model(requests_path, model_name, precision):
136
- """Selects the correct request file for a given model. Only keeps runs tagged as FINISHED"""
137
- request_files = os.path.join(
138
- requests_path,
139
- f"{model_name}_eval_request_*.json",
140
- )
141
- request_files = glob.glob(request_files)
142
-
143
- # Select correct request file (precision)
144
- request_file = ""
145
- request_files = sorted(request_files, reverse=True)
146
- for tmp_request_file in request_files:
147
- with open(tmp_request_file, "r") as f:
148
- req_content = json.load(f)
149
- if (
150
- req_content["status"] in ["FINISHED"]
151
- and req_content["precision"] == precision.split(".")[-1]
152
- ):
153
- request_file = tmp_request_file
154
- return request_file
155
-
156
-
157
- def get_raw_eval_results(results_path: str, requests_path: str) -> list[EvalResult]:
158
- """From the path of the results folder root, extract all needed info for results"""
159
- model_result_filepaths = []
160
-
161
- for root, _, files in os.walk(results_path):
162
- # We should only have json files in model results
163
- if len(files) == 0 or any([not f.endswith(".json") for f in files]):
164
- continue
165
-
166
- # Sort the files by date
167
- try:
168
- files.sort(key=lambda x: x.removesuffix(".json").removeprefix("results_")[:-7])
169
- except dateutil.parser._parser.ParserError:
170
- files = [files[-1]]
171
-
172
- for file in files:
173
- model_result_filepaths.append(os.path.join(root, file))
174
-
175
- eval_results = {}
176
- for model_result_filepath in model_result_filepaths:
177
- # Creation of result
178
- eval_result = EvalResult.init_from_json_file(model_result_filepath)
179
- eval_result.update_with_request_file(requests_path)
180
-
181
- # Store results of same eval together
182
- eval_name = eval_result.eval_name
183
- if eval_name in eval_results.keys():
184
- eval_results[eval_name].results.update({k: v for k, v in eval_result.results.items() if v is not None})
185
- else:
186
- eval_results[eval_name] = eval_result
187
-
188
- results = []
189
- for v in eval_results.values():
190
- try:
191
- v.to_dict() # we test if the dict version is complete
192
- results.append(v)
193
- except KeyError: # not all eval values present
194
- continue
195
-
196
- return results