Spaces:
Running
Running
from toolbox import CatchException, report_execption, select_api_key, update_ui, write_results_to_file, get_conf | |
from .crazy_utils import request_gpt_model_in_new_thread_with_ui_alive | |
def split_audio_file(filename, split_duration=1000): | |
""" | |
根据给定的切割时长将音频文件切割成多个片段。 | |
Args: | |
filename (str): 需要被切割的音频文件名。 | |
split_duration (int, optional): 每个切割音频片段的时长(以秒为单位)。默认值为1000。 | |
Returns: | |
filelist (list): 一个包含所有切割音频片段文件路径的列表。 | |
""" | |
from moviepy.editor import AudioFileClip | |
import os | |
os.makedirs('gpt_log/mp3/cut/', exist_ok=True) # 创建存储切割音频的文件夹 | |
# 读取音频文件 | |
audio = AudioFileClip(filename) | |
# 计算文件总时长和切割点 | |
total_duration = audio.duration | |
split_points = list(range(0, int(total_duration), split_duration)) | |
split_points.append(int(total_duration)) | |
filelist = [] | |
# 切割音频文件 | |
for i in range(len(split_points) - 1): | |
start_time = split_points[i] | |
end_time = split_points[i + 1] | |
split_audio = audio.subclip(start_time, end_time) | |
split_audio.write_audiofile(f"gpt_log/mp3/cut/{filename[0]}_{i}.mp3") | |
filelist.append(f"gpt_log/mp3/cut/{filename[0]}_{i}.mp3") | |
audio.close() | |
return filelist | |
def AnalyAudio(parse_prompt, file_manifest, llm_kwargs, chatbot, history): | |
import os, requests | |
from moviepy.editor import AudioFileClip | |
from request_llm.bridge_all import model_info | |
# 设置OpenAI密钥和模型 | |
api_key = select_api_key(llm_kwargs['api_key'], llm_kwargs['llm_model']) | |
chat_endpoint = model_info[llm_kwargs['llm_model']]['endpoint'] | |
whisper_endpoint = chat_endpoint.replace('chat/completions', 'audio/transcriptions') | |
url = whisper_endpoint | |
headers = { | |
'Authorization': f"Bearer {api_key}" | |
} | |
os.makedirs('gpt_log/mp3/', exist_ok=True) | |
for index, fp in enumerate(file_manifest): | |
audio_history = [] | |
# 提取文件扩展名 | |
ext = os.path.splitext(fp)[1] | |
# 提取视频中的音频 | |
if ext not in [".mp3", ".wav", ".m4a", ".mpga"]: | |
audio_clip = AudioFileClip(fp) | |
audio_clip.write_audiofile(f'gpt_log/mp3/output{index}.mp3') | |
fp = f'gpt_log/mp3/output{index}.mp3' | |
# 调用whisper模型音频转文字 | |
voice = split_audio_file(fp) | |
for j, i in enumerate(voice): | |
with open(i, 'rb') as f: | |
file_content = f.read() # 读取文件内容到内存 | |
files = { | |
'file': (os.path.basename(i), file_content), | |
} | |
data = { | |
"model": "whisper-1", | |
"prompt": parse_prompt, | |
'response_format': "text" | |
} | |
chatbot.append([f"将 {i} 发送到openai音频解析终端 (whisper),当前参数:{parse_prompt}", "正在处理 ..."]) | |
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 | |
proxies, = get_conf('proxies') | |
response = requests.post(url, headers=headers, files=files, data=data, proxies=proxies).text | |
chatbot.append(["音频解析结果", response]) | |
history.extend(["音频解析结果", response]) | |
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 | |
i_say = f'请对下面的音频片段做概述,音频内容是 ```{response}```' | |
i_say_show_user = f'第{index + 1}段音频的第{j + 1} / {len(voice)}片段。' | |
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive( | |
inputs=i_say, | |
inputs_show_user=i_say_show_user, | |
llm_kwargs=llm_kwargs, | |
chatbot=chatbot, | |
history=[], | |
sys_prompt=f"总结音频。音频文件名{fp}" | |
) | |
chatbot[-1] = (i_say_show_user, gpt_say) | |
history.extend([i_say_show_user, gpt_say]) | |
audio_history.extend([i_say_show_user, gpt_say]) | |
# 已经对该文章的所有片段总结完毕,如果文章被切分了 | |
result = "".join(audio_history) | |
if len(audio_history) > 1: | |
i_say = f"根据以上的对话,使用中文总结音频“{result}”的主要内容。" | |
i_say_show_user = f'第{index + 1}段音频的主要内容:' | |
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive( | |
inputs=i_say, | |
inputs_show_user=i_say_show_user, | |
llm_kwargs=llm_kwargs, | |
chatbot=chatbot, | |
history=audio_history, | |
sys_prompt="总结文章。" | |
) | |
history.extend([i_say, gpt_say]) | |
audio_history.extend([i_say, gpt_say]) | |
res = write_results_to_file(history) | |
chatbot.append((f"第{index + 1}段音频完成了吗?", res)) | |
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 | |
# 删除中间文件夹 | |
import shutil | |
shutil.rmtree('gpt_log/mp3') | |
res = write_results_to_file(history) | |
chatbot.append(("所有音频都总结完成了吗?", res)) | |
yield from update_ui(chatbot=chatbot, history=history) | |
def 总结音视频(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, WEB_PORT): | |
import glob, os | |
# 基本信息:功能、贡献者 | |
chatbot.append([ | |
"函数插件功能?", | |
"总结音视频内容,函数插件贡献者: dalvqw & BinaryHusky"]) | |
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 | |
try: | |
from moviepy.editor import AudioFileClip | |
except: | |
report_execption(chatbot, history, | |
a=f"解析项目: {txt}", | |
b=f"导入软件依赖失败。使用该模块需要额外依赖,安装方法```pip install --upgrade moviepy```。") | |
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 | |
return | |
# 清空历史,以免输入溢出 | |
history = [] | |
# 检测输入参数,如没有给定输入参数,直接退出 | |
if os.path.exists(txt): | |
project_folder = txt | |
else: | |
if txt == "": txt = '空空如也的输入栏' | |
report_execption(chatbot, history, a=f"解析项目: {txt}", b=f"找不到本地项目或无权访问: {txt}") | |
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 | |
return | |
# 搜索需要处理的文件清单 | |
extensions = ['.mp4', '.m4a', '.wav', '.mpga', '.mpeg', '.mp3', '.avi', '.mkv', '.flac', '.aac'] | |
if txt.endswith(tuple(extensions)): | |
file_manifest = [txt] | |
else: | |
file_manifest = [] | |
for extension in extensions: | |
file_manifest.extend(glob.glob(f'{project_folder}/**/*{extension}', recursive=True)) | |
# 如果没找到任何文件 | |
if len(file_manifest) == 0: | |
report_execption(chatbot, history, a=f"解析项目: {txt}", b=f"找不到任何音频或视频文件: {txt}") | |
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 | |
return | |
# 开始正式执行任务 | |
if ("advanced_arg" in plugin_kwargs) and (plugin_kwargs["advanced_arg"] == ""): plugin_kwargs.pop("advanced_arg") | |
parse_prompt = plugin_kwargs.get("advanced_arg", '将音频解析为简体中文') | |
yield from AnalyAudio(parse_prompt, file_manifest, llm_kwargs, chatbot, history) | |
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 | |