model_name = "deepseek-coder-6.7b-instruct" cmd_to_install = "未知" # "`pip install -r request_llms/requirements_qwen.txt`" import os from toolbox import ProxyNetworkActivate from toolbox import get_conf from .local_llm_class import LocalLLMHandle, get_local_llm_predict_fns from threading import Thread import torch def download_huggingface_model(model_name, max_retry, local_dir): from huggingface_hub import snapshot_download for i in range(1, max_retry): try: snapshot_download(repo_id=model_name, local_dir=local_dir, resume_download=True) break except Exception as e: print(f'\n\n下载失败,重试第{i}次中...\n\n') return local_dir # ------------------------------------------------------------------------------------------------------------------------ # 🔌💻 Local Model # ------------------------------------------------------------------------------------------------------------------------ class GetCoderLMHandle(LocalLLMHandle): def load_model_info(self): # 🏃‍♂️🏃‍♂️🏃‍♂️ 子进程执行 self.model_name = model_name self.cmd_to_install = cmd_to_install def load_model_and_tokenizer(self): # 🏃‍♂️🏃‍♂️🏃‍♂️ 子进程执行 with ProxyNetworkActivate('Download_LLM'): from transformers import AutoTokenizer, AutoModelForCausalLM, TextIteratorStreamer model_name = "deepseek-ai/deepseek-coder-6.7b-instruct" # local_dir = f"~/.cache/{model_name}" # if not os.path.exists(local_dir): # tokenizer = download_huggingface_model(model_name, max_retry=128, local_dir=local_dir) tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True) self._streamer = TextIteratorStreamer(tokenizer) device_map = { "transformer.word_embeddings": 0, "transformer.word_embeddings_layernorm": 0, "lm_head": 0, "transformer.h": 0, "transformer.ln_f": 0, "model.embed_tokens": 0, "model.layers": 0, "model.norm": 0, } # 检查量化配置 quantization_type = get_conf('LOCAL_MODEL_QUANT') if get_conf('LOCAL_MODEL_DEVICE') != 'cpu': if quantization_type == "INT8": from transformers import BitsAndBytesConfig # 使用 INT8 量化 model = AutoModelForCausalLM.from_pretrained(model_name, trust_remote_code=True, load_in_8bit=True, device_map=device_map) elif quantization_type == "INT4": from transformers import BitsAndBytesConfig # 使用 INT4 量化 bnb_config = BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_use_double_quant=True, bnb_4bit_quant_type="nf4", bnb_4bit_compute_dtype=torch.bfloat16 ) model = AutoModelForCausalLM.from_pretrained(model_name, trust_remote_code=True, quantization_config=bnb_config, device_map=device_map) else: # 使用默认的 FP16 model = AutoModelForCausalLM.from_pretrained(model_name, trust_remote_code=True, torch_dtype=torch.bfloat16, device_map=device_map) else: # CPU 模式 model = AutoModelForCausalLM.from_pretrained(model_name, trust_remote_code=True, torch_dtype=torch.bfloat16) return model, tokenizer def llm_stream_generator(self, **kwargs): # 🏃‍♂️🏃‍♂️🏃‍♂️ 子进程执行 def adaptor(kwargs): query = kwargs['query'] max_length = kwargs['max_length'] top_p = kwargs['top_p'] temperature = kwargs['temperature'] history = kwargs['history'] return query, max_length, top_p, temperature, history query, max_length, top_p, temperature, history = adaptor(kwargs) history.append({ 'role': 'user', 'content': query}) messages = history inputs = self._tokenizer.apply_chat_template(messages, return_tensors="pt") if inputs.shape[1] > max_length: inputs = inputs[:, -max_length:] inputs = inputs.to(self._model.device) generation_kwargs = dict( inputs=inputs, max_new_tokens=max_length, do_sample=False, top_p=top_p, streamer = self._streamer, top_k=50, temperature=temperature, num_return_sequences=1, eos_token_id=32021, ) thread = Thread(target=self._model.generate, kwargs=generation_kwargs, daemon=True) thread.start() generated_text = "" for new_text in self._streamer: generated_text += new_text # print(generated_text) yield generated_text def try_to_import_special_deps(self, **kwargs): pass # import something that will raise error if the user does not install requirement_*.txt # 🏃‍♂️🏃‍♂️🏃‍♂️ 主进程执行 # import importlib # importlib.import_module('modelscope') # ------------------------------------------------------------------------------------------------------------------------ # 🔌💻 GPT-Academic Interface # ------------------------------------------------------------------------------------------------------------------------ predict_no_ui_long_connection, predict = get_local_llm_predict_fns(GetCoderLMHandle, model_name, history_format='chatglm3')