from toolbox import get_conf import threading import logging import os timeout_bot_msg = '[Local Message] Request timeout. Network error.' #os.environ['VOLC_ACCESSKEY'] = '' #os.environ['VOLC_SECRETKEY'] = '' class YUNQUERequestInstance(): def __init__(self): self.time_to_yield_event = threading.Event() self.time_to_exit_event = threading.Event() self.result_buf = "" def generate(self, inputs, llm_kwargs, history, system_prompt): # import _thread as thread from volcengine.maas import MaasService, MaasException maas = MaasService('maas-api.ml-platform-cn-beijing.volces.com', 'cn-beijing') YUNQUE_SECRET_KEY, YUNQUE_ACCESS_KEY,YUNQUE_MODEL = get_conf("YUNQUE_SECRET_KEY", "YUNQUE_ACCESS_KEY","YUNQUE_MODEL") maas.set_ak(YUNQUE_ACCESS_KEY) #填写 VOLC_ACCESSKEY maas.set_sk(YUNQUE_SECRET_KEY) #填写 'VOLC_SECRETKEY' self.result_buf = "" req = { "model": { "name": YUNQUE_MODEL, "version": "1.0", # use default version if not specified. }, "parameters": { "max_new_tokens": 4000, # 输出文本的最大tokens限制 "min_new_tokens": 1, # 输出文本的最小tokens限制 "temperature": llm_kwargs['temperature'], # 用于控制生成文本的随机性和创造性,Temperature值越大随机性越大,取值范围0~1 "top_p": llm_kwargs['top_p'], # 用于控制输出tokens的多样性,TopP值越大输出的tokens类型越丰富,取值范围0~1 "top_k": 0, # 选择预测值最大的k个token进行采样,取值范围0-1000,0表示不生效 "max_prompt_tokens": 4000, # 最大输入 token 数,如果给出的 prompt 的 token 长度超过此限制,取最后 max_prompt_tokens 个 token 输入模型。 }, "messages": self.generate_message_payload(inputs, llm_kwargs, history, system_prompt) } response = maas.stream_chat(req) for resp in response: self.result_buf += resp.choice.message.content yield self.result_buf ''' for event in response.events(): if event.event == "add": self.result_buf += event.data yield self.result_buf elif event.event == "error" or event.event == "interrupted": raise RuntimeError("Unknown error:" + event.data) elif event.event == "finish": yield self.result_buf break else: raise RuntimeError("Unknown error:" + str(event)) logging.info(f'[raw_input] {inputs}') logging.info(f'[response] {self.result_buf}') ''' return self.result_buf def generate_message_payload(inputs, llm_kwargs, history, system_prompt): from volcengine.maas import ChatRole conversation_cnt = len(history) // 2 messages = [{"role": ChatRole.USER, "content": system_prompt}, {"role": ChatRole.ASSISTANT, "content": "Certainly!"}] if conversation_cnt: for index in range(0, 2 * conversation_cnt, 2): what_i_have_asked = {} what_i_have_asked["role"] = ChatRole.USER what_i_have_asked["content"] = history[index] what_gpt_answer = {} what_gpt_answer["role"] = ChatRole.ASSISTANT what_gpt_answer["content"] = history[index + 1] if what_i_have_asked["content"] != "": if what_gpt_answer["content"] == "": continue if what_gpt_answer["content"] == timeout_bot_msg: continue messages.append(what_i_have_asked) messages.append(what_gpt_answer) else: messages[-1]['content'] = what_gpt_answer['content'] what_i_ask_now = {} what_i_ask_now["role"] = ChatRole.USER what_i_ask_now["content"] = inputs messages.append(what_i_ask_now) return messages