Spaces:
Runtime error
Runtime error
Upload sentimental_analysis_training_pipeline.ipynb (#1)
Browse files- Upload sentimental_analysis_training_pipeline.ipynb (06cad47e741b4e12d8dccaf94d5de63418cd7727)
Co-authored-by: Chen Liang <liangc40@users.noreply.huggingface.co>
sentimental_analysis_training_pipeline.ipynb
ADDED
@@ -0,0 +1,1094 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"nbformat": 4,
|
3 |
+
"nbformat_minor": 0,
|
4 |
+
"metadata": {
|
5 |
+
"colab": {
|
6 |
+
"provenance": []
|
7 |
+
},
|
8 |
+
"kernelspec": {
|
9 |
+
"name": "python3",
|
10 |
+
"display_name": "Python 3"
|
11 |
+
},
|
12 |
+
"language_info": {
|
13 |
+
"name": "python"
|
14 |
+
},
|
15 |
+
"accelerator": "GPU",
|
16 |
+
"gpuClass": "standard",
|
17 |
+
"widgets": {
|
18 |
+
"application/vnd.jupyter.widget-state+json": {
|
19 |
+
"23633252c1024924905ec679b76afcff": {
|
20 |
+
"model_module": "@jupyter-widgets/controls",
|
21 |
+
"model_name": "HBoxModel",
|
22 |
+
"model_module_version": "1.5.0",
|
23 |
+
"state": {
|
24 |
+
"_dom_classes": [],
|
25 |
+
"_model_module": "@jupyter-widgets/controls",
|
26 |
+
"_model_module_version": "1.5.0",
|
27 |
+
"_model_name": "HBoxModel",
|
28 |
+
"_view_count": null,
|
29 |
+
"_view_module": "@jupyter-widgets/controls",
|
30 |
+
"_view_module_version": "1.5.0",
|
31 |
+
"_view_name": "HBoxView",
|
32 |
+
"box_style": "",
|
33 |
+
"children": [
|
34 |
+
"IPY_MODEL_c2388f6069984613b88dc84ddb8e4fde",
|
35 |
+
"IPY_MODEL_49e6c1619fdc4e57baf4d981828fc141",
|
36 |
+
"IPY_MODEL_67459de96a474b3c89d12c259823fe8f"
|
37 |
+
],
|
38 |
+
"layout": "IPY_MODEL_096988fe730241bca5b4647c3f5ac561"
|
39 |
+
}
|
40 |
+
},
|
41 |
+
"c2388f6069984613b88dc84ddb8e4fde": {
|
42 |
+
"model_module": "@jupyter-widgets/controls",
|
43 |
+
"model_name": "HTMLModel",
|
44 |
+
"model_module_version": "1.5.0",
|
45 |
+
"state": {
|
46 |
+
"_dom_classes": [],
|
47 |
+
"_model_module": "@jupyter-widgets/controls",
|
48 |
+
"_model_module_version": "1.5.0",
|
49 |
+
"_model_name": "HTMLModel",
|
50 |
+
"_view_count": null,
|
51 |
+
"_view_module": "@jupyter-widgets/controls",
|
52 |
+
"_view_module_version": "1.5.0",
|
53 |
+
"_view_name": "HTMLView",
|
54 |
+
"description": "",
|
55 |
+
"description_tooltip": null,
|
56 |
+
"layout": "IPY_MODEL_432ca53539984f6f8d38ff46c3afa42c",
|
57 |
+
"placeholder": "",
|
58 |
+
"style": "IPY_MODEL_48d442f8e826410da171ab3c54bee0ee",
|
59 |
+
"value": "Model export complete: 100%"
|
60 |
+
}
|
61 |
+
},
|
62 |
+
"49e6c1619fdc4e57baf4d981828fc141": {
|
63 |
+
"model_module": "@jupyter-widgets/controls",
|
64 |
+
"model_name": "FloatProgressModel",
|
65 |
+
"model_module_version": "1.5.0",
|
66 |
+
"state": {
|
67 |
+
"_dom_classes": [],
|
68 |
+
"_model_module": "@jupyter-widgets/controls",
|
69 |
+
"_model_module_version": "1.5.0",
|
70 |
+
"_model_name": "FloatProgressModel",
|
71 |
+
"_view_count": null,
|
72 |
+
"_view_module": "@jupyter-widgets/controls",
|
73 |
+
"_view_module_version": "1.5.0",
|
74 |
+
"_view_name": "ProgressView",
|
75 |
+
"bar_style": "success",
|
76 |
+
"description": "",
|
77 |
+
"description_tooltip": null,
|
78 |
+
"layout": "IPY_MODEL_2571df81b38e490b8752309bd485b91e",
|
79 |
+
"max": 6,
|
80 |
+
"min": 0,
|
81 |
+
"orientation": "horizontal",
|
82 |
+
"style": "IPY_MODEL_02d2d92f6f754d6a9a6b9ed63d5dbed2",
|
83 |
+
"value": 6
|
84 |
+
}
|
85 |
+
},
|
86 |
+
"67459de96a474b3c89d12c259823fe8f": {
|
87 |
+
"model_module": "@jupyter-widgets/controls",
|
88 |
+
"model_name": "HTMLModel",
|
89 |
+
"model_module_version": "1.5.0",
|
90 |
+
"state": {
|
91 |
+
"_dom_classes": [],
|
92 |
+
"_model_module": "@jupyter-widgets/controls",
|
93 |
+
"_model_module_version": "1.5.0",
|
94 |
+
"_model_name": "HTMLModel",
|
95 |
+
"_view_count": null,
|
96 |
+
"_view_module": "@jupyter-widgets/controls",
|
97 |
+
"_view_module_version": "1.5.0",
|
98 |
+
"_view_name": "HTMLView",
|
99 |
+
"description": "",
|
100 |
+
"description_tooltip": null,
|
101 |
+
"layout": "IPY_MODEL_918c8791a4cb4fc08f16f49bbd2cd73f",
|
102 |
+
"placeholder": "",
|
103 |
+
"style": "IPY_MODEL_3058453f9373468d9f09a5867c834d18",
|
104 |
+
"value": " 6/6 [05:03<00:00, 54.56s/it]"
|
105 |
+
}
|
106 |
+
},
|
107 |
+
"096988fe730241bca5b4647c3f5ac561": {
|
108 |
+
"model_module": "@jupyter-widgets/base",
|
109 |
+
"model_name": "LayoutModel",
|
110 |
+
"model_module_version": "1.2.0",
|
111 |
+
"state": {
|
112 |
+
"_model_module": "@jupyter-widgets/base",
|
113 |
+
"_model_module_version": "1.2.0",
|
114 |
+
"_model_name": "LayoutModel",
|
115 |
+
"_view_count": null,
|
116 |
+
"_view_module": "@jupyter-widgets/base",
|
117 |
+
"_view_module_version": "1.2.0",
|
118 |
+
"_view_name": "LayoutView",
|
119 |
+
"align_content": null,
|
120 |
+
"align_items": null,
|
121 |
+
"align_self": null,
|
122 |
+
"border": null,
|
123 |
+
"bottom": null,
|
124 |
+
"display": null,
|
125 |
+
"flex": null,
|
126 |
+
"flex_flow": null,
|
127 |
+
"grid_area": null,
|
128 |
+
"grid_auto_columns": null,
|
129 |
+
"grid_auto_flow": null,
|
130 |
+
"grid_auto_rows": null,
|
131 |
+
"grid_column": null,
|
132 |
+
"grid_gap": null,
|
133 |
+
"grid_row": null,
|
134 |
+
"grid_template_areas": null,
|
135 |
+
"grid_template_columns": null,
|
136 |
+
"grid_template_rows": null,
|
137 |
+
"height": null,
|
138 |
+
"justify_content": null,
|
139 |
+
"justify_items": null,
|
140 |
+
"left": null,
|
141 |
+
"margin": null,
|
142 |
+
"max_height": null,
|
143 |
+
"max_width": null,
|
144 |
+
"min_height": null,
|
145 |
+
"min_width": null,
|
146 |
+
"object_fit": null,
|
147 |
+
"object_position": null,
|
148 |
+
"order": null,
|
149 |
+
"overflow": null,
|
150 |
+
"overflow_x": null,
|
151 |
+
"overflow_y": null,
|
152 |
+
"padding": null,
|
153 |
+
"right": null,
|
154 |
+
"top": null,
|
155 |
+
"visibility": null,
|
156 |
+
"width": null
|
157 |
+
}
|
158 |
+
},
|
159 |
+
"432ca53539984f6f8d38ff46c3afa42c": {
|
160 |
+
"model_module": "@jupyter-widgets/base",
|
161 |
+
"model_name": "LayoutModel",
|
162 |
+
"model_module_version": "1.2.0",
|
163 |
+
"state": {
|
164 |
+
"_model_module": "@jupyter-widgets/base",
|
165 |
+
"_model_module_version": "1.2.0",
|
166 |
+
"_model_name": "LayoutModel",
|
167 |
+
"_view_count": null,
|
168 |
+
"_view_module": "@jupyter-widgets/base",
|
169 |
+
"_view_module_version": "1.2.0",
|
170 |
+
"_view_name": "LayoutView",
|
171 |
+
"align_content": null,
|
172 |
+
"align_items": null,
|
173 |
+
"align_self": null,
|
174 |
+
"border": null,
|
175 |
+
"bottom": null,
|
176 |
+
"display": null,
|
177 |
+
"flex": null,
|
178 |
+
"flex_flow": null,
|
179 |
+
"grid_area": null,
|
180 |
+
"grid_auto_columns": null,
|
181 |
+
"grid_auto_flow": null,
|
182 |
+
"grid_auto_rows": null,
|
183 |
+
"grid_column": null,
|
184 |
+
"grid_gap": null,
|
185 |
+
"grid_row": null,
|
186 |
+
"grid_template_areas": null,
|
187 |
+
"grid_template_columns": null,
|
188 |
+
"grid_template_rows": null,
|
189 |
+
"height": null,
|
190 |
+
"justify_content": null,
|
191 |
+
"justify_items": null,
|
192 |
+
"left": null,
|
193 |
+
"margin": null,
|
194 |
+
"max_height": null,
|
195 |
+
"max_width": null,
|
196 |
+
"min_height": null,
|
197 |
+
"min_width": null,
|
198 |
+
"object_fit": null,
|
199 |
+
"object_position": null,
|
200 |
+
"order": null,
|
201 |
+
"overflow": null,
|
202 |
+
"overflow_x": null,
|
203 |
+
"overflow_y": null,
|
204 |
+
"padding": null,
|
205 |
+
"right": null,
|
206 |
+
"top": null,
|
207 |
+
"visibility": null,
|
208 |
+
"width": null
|
209 |
+
}
|
210 |
+
},
|
211 |
+
"48d442f8e826410da171ab3c54bee0ee": {
|
212 |
+
"model_module": "@jupyter-widgets/controls",
|
213 |
+
"model_name": "DescriptionStyleModel",
|
214 |
+
"model_module_version": "1.5.0",
|
215 |
+
"state": {
|
216 |
+
"_model_module": "@jupyter-widgets/controls",
|
217 |
+
"_model_module_version": "1.5.0",
|
218 |
+
"_model_name": "DescriptionStyleModel",
|
219 |
+
"_view_count": null,
|
220 |
+
"_view_module": "@jupyter-widgets/base",
|
221 |
+
"_view_module_version": "1.2.0",
|
222 |
+
"_view_name": "StyleView",
|
223 |
+
"description_width": ""
|
224 |
+
}
|
225 |
+
},
|
226 |
+
"2571df81b38e490b8752309bd485b91e": {
|
227 |
+
"model_module": "@jupyter-widgets/base",
|
228 |
+
"model_name": "LayoutModel",
|
229 |
+
"model_module_version": "1.2.0",
|
230 |
+
"state": {
|
231 |
+
"_model_module": "@jupyter-widgets/base",
|
232 |
+
"_model_module_version": "1.2.0",
|
233 |
+
"_model_name": "LayoutModel",
|
234 |
+
"_view_count": null,
|
235 |
+
"_view_module": "@jupyter-widgets/base",
|
236 |
+
"_view_module_version": "1.2.0",
|
237 |
+
"_view_name": "LayoutView",
|
238 |
+
"align_content": null,
|
239 |
+
"align_items": null,
|
240 |
+
"align_self": null,
|
241 |
+
"border": null,
|
242 |
+
"bottom": null,
|
243 |
+
"display": null,
|
244 |
+
"flex": null,
|
245 |
+
"flex_flow": null,
|
246 |
+
"grid_area": null,
|
247 |
+
"grid_auto_columns": null,
|
248 |
+
"grid_auto_flow": null,
|
249 |
+
"grid_auto_rows": null,
|
250 |
+
"grid_column": null,
|
251 |
+
"grid_gap": null,
|
252 |
+
"grid_row": null,
|
253 |
+
"grid_template_areas": null,
|
254 |
+
"grid_template_columns": null,
|
255 |
+
"grid_template_rows": null,
|
256 |
+
"height": null,
|
257 |
+
"justify_content": null,
|
258 |
+
"justify_items": null,
|
259 |
+
"left": null,
|
260 |
+
"margin": null,
|
261 |
+
"max_height": null,
|
262 |
+
"max_width": null,
|
263 |
+
"min_height": null,
|
264 |
+
"min_width": null,
|
265 |
+
"object_fit": null,
|
266 |
+
"object_position": null,
|
267 |
+
"order": null,
|
268 |
+
"overflow": null,
|
269 |
+
"overflow_x": null,
|
270 |
+
"overflow_y": null,
|
271 |
+
"padding": null,
|
272 |
+
"right": null,
|
273 |
+
"top": null,
|
274 |
+
"visibility": null,
|
275 |
+
"width": null
|
276 |
+
}
|
277 |
+
},
|
278 |
+
"02d2d92f6f754d6a9a6b9ed63d5dbed2": {
|
279 |
+
"model_module": "@jupyter-widgets/controls",
|
280 |
+
"model_name": "ProgressStyleModel",
|
281 |
+
"model_module_version": "1.5.0",
|
282 |
+
"state": {
|
283 |
+
"_model_module": "@jupyter-widgets/controls",
|
284 |
+
"_model_module_version": "1.5.0",
|
285 |
+
"_model_name": "ProgressStyleModel",
|
286 |
+
"_view_count": null,
|
287 |
+
"_view_module": "@jupyter-widgets/base",
|
288 |
+
"_view_module_version": "1.2.0",
|
289 |
+
"_view_name": "StyleView",
|
290 |
+
"bar_color": null,
|
291 |
+
"description_width": ""
|
292 |
+
}
|
293 |
+
},
|
294 |
+
"918c8791a4cb4fc08f16f49bbd2cd73f": {
|
295 |
+
"model_module": "@jupyter-widgets/base",
|
296 |
+
"model_name": "LayoutModel",
|
297 |
+
"model_module_version": "1.2.0",
|
298 |
+
"state": {
|
299 |
+
"_model_module": "@jupyter-widgets/base",
|
300 |
+
"_model_module_version": "1.2.0",
|
301 |
+
"_model_name": "LayoutModel",
|
302 |
+
"_view_count": null,
|
303 |
+
"_view_module": "@jupyter-widgets/base",
|
304 |
+
"_view_module_version": "1.2.0",
|
305 |
+
"_view_name": "LayoutView",
|
306 |
+
"align_content": null,
|
307 |
+
"align_items": null,
|
308 |
+
"align_self": null,
|
309 |
+
"border": null,
|
310 |
+
"bottom": null,
|
311 |
+
"display": null,
|
312 |
+
"flex": null,
|
313 |
+
"flex_flow": null,
|
314 |
+
"grid_area": null,
|
315 |
+
"grid_auto_columns": null,
|
316 |
+
"grid_auto_flow": null,
|
317 |
+
"grid_auto_rows": null,
|
318 |
+
"grid_column": null,
|
319 |
+
"grid_gap": null,
|
320 |
+
"grid_row": null,
|
321 |
+
"grid_template_areas": null,
|
322 |
+
"grid_template_columns": null,
|
323 |
+
"grid_template_rows": null,
|
324 |
+
"height": null,
|
325 |
+
"justify_content": null,
|
326 |
+
"justify_items": null,
|
327 |
+
"left": null,
|
328 |
+
"margin": null,
|
329 |
+
"max_height": null,
|
330 |
+
"max_width": null,
|
331 |
+
"min_height": null,
|
332 |
+
"min_width": null,
|
333 |
+
"object_fit": null,
|
334 |
+
"object_position": null,
|
335 |
+
"order": null,
|
336 |
+
"overflow": null,
|
337 |
+
"overflow_x": null,
|
338 |
+
"overflow_y": null,
|
339 |
+
"padding": null,
|
340 |
+
"right": null,
|
341 |
+
"top": null,
|
342 |
+
"visibility": null,
|
343 |
+
"width": null
|
344 |
+
}
|
345 |
+
},
|
346 |
+
"3058453f9373468d9f09a5867c834d18": {
|
347 |
+
"model_module": "@jupyter-widgets/controls",
|
348 |
+
"model_name": "DescriptionStyleModel",
|
349 |
+
"model_module_version": "1.5.0",
|
350 |
+
"state": {
|
351 |
+
"_model_module": "@jupyter-widgets/controls",
|
352 |
+
"_model_module_version": "1.5.0",
|
353 |
+
"_model_name": "DescriptionStyleModel",
|
354 |
+
"_view_count": null,
|
355 |
+
"_view_module": "@jupyter-widgets/base",
|
356 |
+
"_view_module_version": "1.2.0",
|
357 |
+
"_view_name": "StyleView",
|
358 |
+
"description_width": ""
|
359 |
+
}
|
360 |
+
}
|
361 |
+
}
|
362 |
+
}
|
363 |
+
},
|
364 |
+
"cells": [
|
365 |
+
{
|
366 |
+
"cell_type": "code",
|
367 |
+
"execution_count": null,
|
368 |
+
"metadata": {
|
369 |
+
"id": "KNG3EMWB9woD"
|
370 |
+
},
|
371 |
+
"outputs": [],
|
372 |
+
"source": [
|
373 |
+
"!pip install click==8.0.3\n",
|
374 |
+
"!pip install cloudml_hypertune==0.1.0.dev6\n",
|
375 |
+
"!pip install hypertune==0.0.0\n",
|
376 |
+
"!pip uninstall matplotlib\n",
|
377 |
+
"!pip install matplotlib==3.1.3\n",
|
378 |
+
"!pip install numpy==1.20.3\n",
|
379 |
+
"!pip install pandas==1.3.4\n",
|
380 |
+
"!pip install protobuf==3.19.3\n",
|
381 |
+
"!pip install python-dotenv==0.19.2\n",
|
382 |
+
"!pip install cikit_learn==1.0.2\n",
|
383 |
+
"!pip install torch==1.10.1\n",
|
384 |
+
"!pip install transformers==4.15.0\n",
|
385 |
+
"!pip install hopsworks"
|
386 |
+
]
|
387 |
+
},
|
388 |
+
{
|
389 |
+
"cell_type": "code",
|
390 |
+
"source": [
|
391 |
+
"import warnings\n",
|
392 |
+
"warnings.filterwarnings(\"ignore\")"
|
393 |
+
],
|
394 |
+
"metadata": {
|
395 |
+
"id": "9jQ-nMBYH1mB"
|
396 |
+
},
|
397 |
+
"execution_count": 2,
|
398 |
+
"outputs": []
|
399 |
+
},
|
400 |
+
{
|
401 |
+
"cell_type": "code",
|
402 |
+
"source": [
|
403 |
+
"import hopsworks\n",
|
404 |
+
"project = hopsworks.login()"
|
405 |
+
],
|
406 |
+
"metadata": {
|
407 |
+
"colab": {
|
408 |
+
"base_uri": "https://localhost:8080/"
|
409 |
+
},
|
410 |
+
"id": "xfOcg7kX_G15",
|
411 |
+
"outputId": "764a5c83-0b44-42fa-ec56-f5fea94c35ed"
|
412 |
+
},
|
413 |
+
"execution_count": 3,
|
414 |
+
"outputs": [
|
415 |
+
{
|
416 |
+
"output_type": "stream",
|
417 |
+
"name": "stdout",
|
418 |
+
"text": [
|
419 |
+
"Copy your Api Key (first register/login): https://c.app.hopsworks.ai/account/api/generated\n",
|
420 |
+
"\n",
|
421 |
+
"Paste it here: ··········\n",
|
422 |
+
"Connected. Call `.close()` to terminate connection gracefully.\n",
|
423 |
+
"\n",
|
424 |
+
"Multiple projects found. \n",
|
425 |
+
"\n",
|
426 |
+
"\t (1) liangc40\n",
|
427 |
+
"\t (2) Lab1_for_iris\n",
|
428 |
+
"\n",
|
429 |
+
"Enter project to access: 1\n",
|
430 |
+
"\n",
|
431 |
+
"Logged in to project, explore it here https://c.app.hopsworks.ai:443/p/5311\n"
|
432 |
+
]
|
433 |
+
}
|
434 |
+
]
|
435 |
+
},
|
436 |
+
{
|
437 |
+
"cell_type": "markdown",
|
438 |
+
"source": [
|
439 |
+
"## Load Feature from Hopsworks"
|
440 |
+
],
|
441 |
+
"metadata": {
|
442 |
+
"id": "AS56zXEDCeae"
|
443 |
+
}
|
444 |
+
},
|
445 |
+
{
|
446 |
+
"cell_type": "code",
|
447 |
+
"source": [
|
448 |
+
"fs = project.get_feature_store()\n",
|
449 |
+
"try: \n",
|
450 |
+
" feature_view = fs.get_feature_view(name=\"sentimental_analysis_feature_group\", version=1)\n",
|
451 |
+
"except:\n",
|
452 |
+
" fg = fs.get_feature_group(name=\"sentimental_analysis_feature_group\", version=1)\n",
|
453 |
+
" query = fg.select_all()\n",
|
454 |
+
" feature_view = fs.create_feature_view(name=\"sentimental_analysis_feature_group\",\n",
|
455 |
+
" version=1,\n",
|
456 |
+
" description=\"Read from pre-processed sentimental analysis dataset\",\n",
|
457 |
+
" labels=[\"label\"],\n",
|
458 |
+
" query=query) "
|
459 |
+
],
|
460 |
+
"metadata": {
|
461 |
+
"colab": {
|
462 |
+
"base_uri": "https://localhost:8080/"
|
463 |
+
},
|
464 |
+
"id": "ck9vNlZj_cRA",
|
465 |
+
"outputId": "1dbcae12-51cf-4a38-d77e-dd94e0201299"
|
466 |
+
},
|
467 |
+
"execution_count": 4,
|
468 |
+
"outputs": [
|
469 |
+
{
|
470 |
+
"output_type": "stream",
|
471 |
+
"name": "stderr",
|
472 |
+
"text": [
|
473 |
+
"DeprecationWarning: Using or importing the ABCs from 'collections' instead of from 'collections.abc' is deprecated since Python 3.3, and in 3.10 it will stop working\n",
|
474 |
+
"DeprecationWarning: Using or importing the ABCs from 'collections' instead of from 'collections.abc' is deprecated since Python 3.3, and in 3.10 it will stop working\n"
|
475 |
+
]
|
476 |
+
},
|
477 |
+
{
|
478 |
+
"output_type": "stream",
|
479 |
+
"name": "stdout",
|
480 |
+
"text": [
|
481 |
+
"Connected. Call `.close()` to terminate connection gracefully.\n"
|
482 |
+
]
|
483 |
+
}
|
484 |
+
]
|
485 |
+
},
|
486 |
+
{
|
487 |
+
"cell_type": "markdown",
|
488 |
+
"source": [
|
489 |
+
"## Create DataLoader and TweetsDataset"
|
490 |
+
],
|
491 |
+
"metadata": {
|
492 |
+
"id": "nts7RyyHCmlJ"
|
493 |
+
}
|
494 |
+
},
|
495 |
+
{
|
496 |
+
"cell_type": "code",
|
497 |
+
"source": [
|
498 |
+
"BATCH_SIZE = 16\n",
|
499 |
+
"MAX_LEN = 160\n",
|
500 |
+
"EPOCHS = 3"
|
501 |
+
],
|
502 |
+
"metadata": {
|
503 |
+
"id": "zwfWbehIEZWH"
|
504 |
+
},
|
505 |
+
"execution_count": 35,
|
506 |
+
"outputs": []
|
507 |
+
},
|
508 |
+
{
|
509 |
+
"cell_type": "code",
|
510 |
+
"source": [
|
511 |
+
"from torch.utils.data import Dataset, DataLoader\n",
|
512 |
+
"from sklearn.model_selection import train_test_split\n",
|
513 |
+
"import torch\n",
|
514 |
+
"import numpy as np\n",
|
515 |
+
"from transformers import BertModel, BertTokenizer, AdamW, get_linear_schedule_with_warmup\n",
|
516 |
+
"\n",
|
517 |
+
"class TweetsDataset(Dataset):\n",
|
518 |
+
" def __init__(self, message, depression, tokenizer, max_len):\n",
|
519 |
+
" self.message = message\n",
|
520 |
+
" self.depression = depression\n",
|
521 |
+
" self.tokenizer = tokenizer\n",
|
522 |
+
" self.max_len = max_len\n",
|
523 |
+
" \n",
|
524 |
+
" def __len__(self):\n",
|
525 |
+
" return len(self.message)\n",
|
526 |
+
" \n",
|
527 |
+
" def __getitem__(self, item):\n",
|
528 |
+
" message = str(self.message[item])\n",
|
529 |
+
" depression = self.depression[item]\n",
|
530 |
+
"\n",
|
531 |
+
" encoding = self.tokenizer.encode_plus(\n",
|
532 |
+
" message,\n",
|
533 |
+
" add_special_tokens=True,\n",
|
534 |
+
" max_length=self.max_len,\n",
|
535 |
+
" return_token_type_ids=False,\n",
|
536 |
+
" truncation=True,\n",
|
537 |
+
" pad_to_max_length=True,\n",
|
538 |
+
" return_attention_mask=True,\n",
|
539 |
+
" return_tensors='pt',\n",
|
540 |
+
" )\n",
|
541 |
+
"\n",
|
542 |
+
" return {\n",
|
543 |
+
" 'tweet_text': message,\n",
|
544 |
+
" 'input_ids': encoding['input_ids'].flatten(),\n",
|
545 |
+
" 'attention_mask': encoding['attention_mask'].flatten(),\n",
|
546 |
+
" 'depression': torch.tensor(depression, dtype=torch.long)\n",
|
547 |
+
" }"
|
548 |
+
],
|
549 |
+
"metadata": {
|
550 |
+
"id": "Icpi3iw7CRBu"
|
551 |
+
},
|
552 |
+
"execution_count": 6,
|
553 |
+
"outputs": []
|
554 |
+
},
|
555 |
+
{
|
556 |
+
"cell_type": "code",
|
557 |
+
"source": [
|
558 |
+
"def create_data_loader(message, depression, tokenizer, max_len, batch_size):\n",
|
559 |
+
" ds = TweetsDataset(\n",
|
560 |
+
" message = message['message'].to_numpy(),\n",
|
561 |
+
" depression = depression['label'].to_numpy(),\n",
|
562 |
+
" tokenizer=tokenizer,\n",
|
563 |
+
" max_len=max_len\n",
|
564 |
+
" )\n",
|
565 |
+
"\n",
|
566 |
+
" return DataLoader(\n",
|
567 |
+
" ds,\n",
|
568 |
+
" batch_size = batch_size,\n",
|
569 |
+
" num_workers = 9\n",
|
570 |
+
" )"
|
571 |
+
],
|
572 |
+
"metadata": {
|
573 |
+
"id": "UzKUaFdOCU98"
|
574 |
+
},
|
575 |
+
"execution_count": 22,
|
576 |
+
"outputs": []
|
577 |
+
},
|
578 |
+
{
|
579 |
+
"cell_type": "code",
|
580 |
+
"source": [
|
581 |
+
"train_message, test_message, train_depression, test_depression = feature_view.train_test_split(0.2)\n",
|
582 |
+
"\n",
|
583 |
+
"#Creating dataloaders\n",
|
584 |
+
"tokenizer = BertTokenizer.from_pretrained('bert-base-cased')\n",
|
585 |
+
"train_data_loader = create_data_loader(train_message, train_depression, tokenizer, MAX_LEN, BATCH_SIZE)\n",
|
586 |
+
"test_data_loader = create_data_loader(test_message, test_depression, tokenizer, MAX_LEN, BATCH_SIZE)\n",
|
587 |
+
"data = next(iter(train_data_loader))"
|
588 |
+
],
|
589 |
+
"metadata": {
|
590 |
+
"colab": {
|
591 |
+
"base_uri": "https://localhost:8080/"
|
592 |
+
},
|
593 |
+
"id": "QLzTqeQ7DDTs",
|
594 |
+
"outputId": "4c4b73fd-1b23-40a2-ca23-39efcfb9db72"
|
595 |
+
},
|
596 |
+
"execution_count": 23,
|
597 |
+
"outputs": [
|
598 |
+
{
|
599 |
+
"output_type": "stream",
|
600 |
+
"name": "stderr",
|
601 |
+
"text": [
|
602 |
+
"VersionWarning: Incremented version to `39`.\n"
|
603 |
+
]
|
604 |
+
}
|
605 |
+
]
|
606 |
+
},
|
607 |
+
{
|
608 |
+
"cell_type": "markdown",
|
609 |
+
"source": [
|
610 |
+
"## Bert-Based Depression Classier Model"
|
611 |
+
],
|
612 |
+
"metadata": {
|
613 |
+
"id": "dzDl3HR6MRqf"
|
614 |
+
}
|
615 |
+
},
|
616 |
+
{
|
617 |
+
"cell_type": "code",
|
618 |
+
"source": [
|
619 |
+
"from torch import nn, optim\n",
|
620 |
+
"import torch.nn.functional as F\n",
|
621 |
+
"import transformers\n",
|
622 |
+
"from transformers import BertModel, BertTokenizer, AdamW, get_linear_schedule_with_warmup\n",
|
623 |
+
"from collections import defaultdict\n",
|
624 |
+
"\n",
|
625 |
+
"class DepressionClassifier(nn.Module):\n",
|
626 |
+
" def __init__(self, n_classes, pre_trained_model_name):\n",
|
627 |
+
" super(DepressionClassifier, self).__init__()\n",
|
628 |
+
" self.bert = BertModel.from_pretrained(pre_trained_model_name)\n",
|
629 |
+
" self.drop = nn.Dropout(p=0.3)\n",
|
630 |
+
" self.out = nn.Linear(self.bert.config.hidden_size, n_classes)\n",
|
631 |
+
"\n",
|
632 |
+
" def forward(self, input_ids, attention_mask):\n",
|
633 |
+
" _, pooled_output = self.bert(\n",
|
634 |
+
" input_ids=input_ids,\n",
|
635 |
+
" attention_mask=attention_mask,\n",
|
636 |
+
" return_dict = False #here\n",
|
637 |
+
" )\n",
|
638 |
+
" output = self.drop(pooled_output)\n",
|
639 |
+
" return self.out(output)"
|
640 |
+
],
|
641 |
+
"metadata": {
|
642 |
+
"id": "frP5Mk_4NvSe"
|
643 |
+
},
|
644 |
+
"execution_count": 24,
|
645 |
+
"outputs": []
|
646 |
+
},
|
647 |
+
{
|
648 |
+
"cell_type": "code",
|
649 |
+
"source": [
|
650 |
+
"class_names = ['Not Depressed', 'Depressed']\n",
|
651 |
+
"model = DepressionClassifier(len(class_names), 'bert-base-cased')"
|
652 |
+
],
|
653 |
+
"metadata": {
|
654 |
+
"colab": {
|
655 |
+
"base_uri": "https://localhost:8080/"
|
656 |
+
},
|
657 |
+
"id": "TH0OMDamN32-",
|
658 |
+
"outputId": "3ec8d3f7-1dee-4c0f-f004-37bcc2112a16"
|
659 |
+
},
|
660 |
+
"execution_count": 25,
|
661 |
+
"outputs": [
|
662 |
+
{
|
663 |
+
"output_type": "stream",
|
664 |
+
"name": "stderr",
|
665 |
+
"text": [
|
666 |
+
"Some weights of the model checkpoint at bert-base-cased were not used when initializing BertModel: ['cls.predictions.decoder.weight', 'cls.predictions.transform.dense.weight', 'cls.seq_relationship.weight', 'cls.seq_relationship.bias', 'cls.predictions.transform.dense.bias', 'cls.predictions.transform.LayerNorm.bias', 'cls.predictions.bias', 'cls.predictions.transform.LayerNorm.weight']\n",
|
667 |
+
"- This IS expected if you are initializing BertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n",
|
668 |
+
"- This IS NOT expected if you are initializing BertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n"
|
669 |
+
]
|
670 |
+
}
|
671 |
+
]
|
672 |
+
},
|
673 |
+
{
|
674 |
+
"cell_type": "markdown",
|
675 |
+
"source": [
|
676 |
+
"## Training Functions"
|
677 |
+
],
|
678 |
+
"metadata": {
|
679 |
+
"id": "wpJdcYItKqnN"
|
680 |
+
}
|
681 |
+
},
|
682 |
+
{
|
683 |
+
"cell_type": "code",
|
684 |
+
"source": [
|
685 |
+
"from torch import nn, optim\n",
|
686 |
+
"import torch.nn.functional as F\n",
|
687 |
+
"import transformers\n",
|
688 |
+
"from transformers import BertModel, BertTokenizer, AdamW, get_linear_schedule_with_warmup\n",
|
689 |
+
"from collections import defaultdict\n",
|
690 |
+
"import matplotlib.pyplot as plt"
|
691 |
+
],
|
692 |
+
"metadata": {
|
693 |
+
"id": "czXmMyUzLS7z"
|
694 |
+
},
|
695 |
+
"execution_count": 26,
|
696 |
+
"outputs": []
|
697 |
+
},
|
698 |
+
{
|
699 |
+
"cell_type": "code",
|
700 |
+
"source": [
|
701 |
+
"def train_epoch(model, data_loader, loss_fn, optimizer, device, scheduler, n_examples):\n",
|
702 |
+
" model = model.train()\n",
|
703 |
+
"\n",
|
704 |
+
" losses = []\n",
|
705 |
+
" correct_predictions = 0\n",
|
706 |
+
" \n",
|
707 |
+
" for d in data_loader:\n",
|
708 |
+
" input_ids = d[\"input_ids\"].to(device)\n",
|
709 |
+
" attention_mask = d[\"attention_mask\"].to(device)\n",
|
710 |
+
" depression = d[\"depression\"].to(device)\n",
|
711 |
+
"\n",
|
712 |
+
" outputs = model(\n",
|
713 |
+
" input_ids = input_ids,\n",
|
714 |
+
" attention_mask = attention_mask\n",
|
715 |
+
" )\n",
|
716 |
+
"\n",
|
717 |
+
" _, preds = torch.max(outputs, dim=1)\n",
|
718 |
+
" loss = loss_fn(outputs, depression)\n",
|
719 |
+
"\n",
|
720 |
+
" correct_predictions += torch.sum(preds == depression)\n",
|
721 |
+
" losses.append(loss.item())\n",
|
722 |
+
"\n",
|
723 |
+
" loss.backward()\n",
|
724 |
+
" nn.utils.clip_grad_norm_(model.parameters(), max_norm=1.0)\n",
|
725 |
+
" optimizer.step()\n",
|
726 |
+
" scheduler.step()\n",
|
727 |
+
" optimizer.zero_grad()\n",
|
728 |
+
"\n",
|
729 |
+
" return correct_predictions.double() / n_examples, np.mean(losses)"
|
730 |
+
],
|
731 |
+
"metadata": {
|
732 |
+
"id": "OZ9Ykhx9Kv9X"
|
733 |
+
},
|
734 |
+
"execution_count": 27,
|
735 |
+
"outputs": []
|
736 |
+
},
|
737 |
+
{
|
738 |
+
"cell_type": "code",
|
739 |
+
"source": [
|
740 |
+
"def eval_model(model, data_loader, loss_fn, device, n_examples):\n",
|
741 |
+
" model = model.eval()\n",
|
742 |
+
" losses = []\n",
|
743 |
+
" correct_predictions = 0\n",
|
744 |
+
"\n",
|
745 |
+
" with torch.no_grad():\n",
|
746 |
+
" for d in data_loader:\n",
|
747 |
+
" input_ids = d[\"input_ids\"].to(device)\n",
|
748 |
+
" attention_mask = d[\"attention_mask\"].to(device)\n",
|
749 |
+
" depression = d[\"depression\"].to(device)\n",
|
750 |
+
"\n",
|
751 |
+
" outputs = model(\n",
|
752 |
+
" input_ids = input_ids,\n",
|
753 |
+
" attention_mask = attention_mask\n",
|
754 |
+
" )\n",
|
755 |
+
" _, preds = torch.max(outputs, dim=1)\n",
|
756 |
+
"\n",
|
757 |
+
" loss = loss_fn(outputs, depression)\n",
|
758 |
+
"\n",
|
759 |
+
" correct_predictions += torch.sum(preds == depression)\n",
|
760 |
+
" losses.append(loss.item())\n",
|
761 |
+
"\n",
|
762 |
+
" return correct_predictions.double() / n_examples, np.mean(losses)"
|
763 |
+
],
|
764 |
+
"metadata": {
|
765 |
+
"id": "T6DMQmcrL0t6"
|
766 |
+
},
|
767 |
+
"execution_count": 28,
|
768 |
+
"outputs": []
|
769 |
+
},
|
770 |
+
{
|
771 |
+
"cell_type": "code",
|
772 |
+
"source": [
|
773 |
+
"def loss_accuracy_plots(history):\n",
|
774 |
+
" plt.figure(1)\n",
|
775 |
+
" plt.plot(history['train_loss'])\n",
|
776 |
+
" plt.plot(history['val_loss'])\n",
|
777 |
+
" plt.xlabel(\"Epochs [-]\")\n",
|
778 |
+
" plt.ylabel(\"Loss [-]\")\n",
|
779 |
+
" plt.legend(['Training loss','Validation loss'])\n",
|
780 |
+
" plt.grid()\n",
|
781 |
+
" plt.savefig(f\"/content/Training_losses_plot.jpg\")\n",
|
782 |
+
" plt.figure(2)\n",
|
783 |
+
" plt.plot(history['train_acc'])\n",
|
784 |
+
" plt.plot(history['val_acc'])\n",
|
785 |
+
" plt.xlabel(\"Epochs [-]\")\n",
|
786 |
+
" plt.ylabel(\"Loss [-]\")\n",
|
787 |
+
" plt.legend(['Training accuracy','Validation accuracy'])\n",
|
788 |
+
" plt.grid()\n",
|
789 |
+
" plt.savefig(f\"/content/Training_accuracies_plot.jpg\")"
|
790 |
+
],
|
791 |
+
"metadata": {
|
792 |
+
"id": "JkAu-va5L34i"
|
793 |
+
},
|
794 |
+
"execution_count": 51,
|
795 |
+
"outputs": []
|
796 |
+
},
|
797 |
+
{
|
798 |
+
"cell_type": "markdown",
|
799 |
+
"source": [
|
800 |
+
"## Training Data"
|
801 |
+
],
|
802 |
+
"metadata": {
|
803 |
+
"id": "rfslV1NJL7cj"
|
804 |
+
}
|
805 |
+
},
|
806 |
+
{
|
807 |
+
"cell_type": "code",
|
808 |
+
"source": [
|
809 |
+
"gpu_info = !nvidia-smi\n",
|
810 |
+
"gpu_info = '\\n'.join(gpu_info)\n",
|
811 |
+
"if gpu_info.find('failed') >= 0:\n",
|
812 |
+
" print('Not connected to a GPU')\n",
|
813 |
+
"else:\n",
|
814 |
+
" print(gpu_info)"
|
815 |
+
],
|
816 |
+
"metadata": {
|
817 |
+
"colab": {
|
818 |
+
"base_uri": "https://localhost:8080/"
|
819 |
+
},
|
820 |
+
"id": "d_vJG_kuQlTw",
|
821 |
+
"outputId": "aff034a1-da7f-4159-f68b-82f6ba10812f"
|
822 |
+
},
|
823 |
+
"execution_count": 31,
|
824 |
+
"outputs": [
|
825 |
+
{
|
826 |
+
"output_type": "stream",
|
827 |
+
"name": "stdout",
|
828 |
+
"text": [
|
829 |
+
"Wed Jan 11 10:55:48 2023 \n",
|
830 |
+
"+-----------------------------------------------------------------------------+\n",
|
831 |
+
"| NVIDIA-SMI 460.32.03 Driver Version: 460.32.03 CUDA Version: 11.2 |\n",
|
832 |
+
"|-------------------------------+----------------------+----------------------+\n",
|
833 |
+
"| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |\n",
|
834 |
+
"| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |\n",
|
835 |
+
"| | | MIG M. |\n",
|
836 |
+
"|===============================+======================+======================|\n",
|
837 |
+
"| 0 Tesla T4 Off | 00000000:00:04.0 Off | 0 |\n",
|
838 |
+
"| N/A 55C P0 29W / 70W | 10716MiB / 15109MiB | 0% Default |\n",
|
839 |
+
"| | | N/A |\n",
|
840 |
+
"+-------------------------------+----------------------+----------------------+\n",
|
841 |
+
" \n",
|
842 |
+
"+-----------------------------------------------------------------------------+\n",
|
843 |
+
"| Processes: |\n",
|
844 |
+
"| GPU GI CI PID Type Process name GPU Memory |\n",
|
845 |
+
"| ID ID Usage |\n",
|
846 |
+
"|=============================================================================|\n",
|
847 |
+
"+-----------------------------------------------------------------------------+\n"
|
848 |
+
]
|
849 |
+
}
|
850 |
+
]
|
851 |
+
},
|
852 |
+
{
|
853 |
+
"cell_type": "code",
|
854 |
+
"source": [
|
855 |
+
"device = torch.device(\"cuda:0\" if torch.cuda.is_available() else \"cpu\")\n",
|
856 |
+
"model = model.to(device)\n",
|
857 |
+
"input_ids = data['input_ids'].to(device)\n",
|
858 |
+
"attention_mask = data['attention_mask'].to(device)"
|
859 |
+
],
|
860 |
+
"metadata": {
|
861 |
+
"id": "ly__rDVkRwB2"
|
862 |
+
},
|
863 |
+
"execution_count": 32,
|
864 |
+
"outputs": []
|
865 |
+
},
|
866 |
+
{
|
867 |
+
"cell_type": "code",
|
868 |
+
"source": [
|
869 |
+
"F.softmax(model(input_ids, attention_mask), dim=1)"
|
870 |
+
],
|
871 |
+
"metadata": {
|
872 |
+
"colab": {
|
873 |
+
"base_uri": "https://localhost:8080/"
|
874 |
+
},
|
875 |
+
"id": "uLoWAKm3Wz8K",
|
876 |
+
"outputId": "d5713105-5c3d-40b4-82e4-5c6766852e5e"
|
877 |
+
},
|
878 |
+
"execution_count": 33,
|
879 |
+
"outputs": [
|
880 |
+
{
|
881 |
+
"output_type": "execute_result",
|
882 |
+
"data": {
|
883 |
+
"text/plain": [
|
884 |
+
"tensor([[0.6483, 0.3517],\n",
|
885 |
+
" [0.7467, 0.2533],\n",
|
886 |
+
" [0.7182, 0.2818],\n",
|
887 |
+
" [0.6410, 0.3590],\n",
|
888 |
+
" [0.4981, 0.5019],\n",
|
889 |
+
" [0.6323, 0.3677],\n",
|
890 |
+
" [0.3284, 0.6716],\n",
|
891 |
+
" [0.6354, 0.3646],\n",
|
892 |
+
" [0.5387, 0.4613],\n",
|
893 |
+
" [0.5530, 0.4470],\n",
|
894 |
+
" [0.5840, 0.4160],\n",
|
895 |
+
" [0.6082, 0.3918],\n",
|
896 |
+
" [0.5927, 0.4073],\n",
|
897 |
+
" [0.5545, 0.4455],\n",
|
898 |
+
" [0.7305, 0.2695],\n",
|
899 |
+
" [0.6892, 0.3108]], device='cuda:0', grad_fn=<SoftmaxBackward0>)"
|
900 |
+
]
|
901 |
+
},
|
902 |
+
"metadata": {},
|
903 |
+
"execution_count": 33
|
904 |
+
}
|
905 |
+
]
|
906 |
+
},
|
907 |
+
{
|
908 |
+
"cell_type": "code",
|
909 |
+
"source": [
|
910 |
+
"import gc\n",
|
911 |
+
"gc.collect()\n",
|
912 |
+
"\n",
|
913 |
+
"optimizer = AdamW(model.parameters(), lr = 2e-5, correct_bias = False)\n",
|
914 |
+
"total_steps = len(train_data_loader) * EPOCHS\n",
|
915 |
+
"scheduler = get_linear_schedule_with_warmup(optimizer,\n",
|
916 |
+
" num_warmup_steps = 0,\n",
|
917 |
+
" num_training_steps = total_steps)\n",
|
918 |
+
"\n",
|
919 |
+
"loss_fn = nn.CrossEntropyLoss().to(device)\n",
|
920 |
+
"history = defaultdict(list)\n",
|
921 |
+
"best_accuracy = 0\n",
|
922 |
+
"\n",
|
923 |
+
"for epoch in range(EPOCHS):\n",
|
924 |
+
" print(f'Epoch {epoch + 1}/{EPOCHS}')\n",
|
925 |
+
" print('-' * 10)\n",
|
926 |
+
" \n",
|
927 |
+
" train_acc, train_loss = train_epoch(model, train_data_loader, loss_fn, optimizer, device, scheduler, len(train_message))\n",
|
928 |
+
" \n",
|
929 |
+
" print(f'Train loss {train_loss} accuracy {train_acc}')\n",
|
930 |
+
" \n",
|
931 |
+
" val_acc, val_loss = eval_model(model, test_data_loader, loss_fn, device, len(test_message))\n",
|
932 |
+
" \n",
|
933 |
+
" print(f'Val loss {val_loss} accuracy {val_acc}')\n",
|
934 |
+
" \n",
|
935 |
+
" history['train_acc'].append(train_acc)\n",
|
936 |
+
" history['train_loss'].append(train_loss)\n",
|
937 |
+
" history['val_acc'].append(val_acc)\n",
|
938 |
+
" history['val_loss'].append(val_loss)"
|
939 |
+
],
|
940 |
+
"metadata": {
|
941 |
+
"colab": {
|
942 |
+
"base_uri": "https://localhost:8080/"
|
943 |
+
},
|
944 |
+
"id": "RKbvtLNnW7dh",
|
945 |
+
"outputId": "1cc22ebc-bf68-4d97-f976-f37d92bc7993"
|
946 |
+
},
|
947 |
+
"execution_count": 41,
|
948 |
+
"outputs": [
|
949 |
+
{
|
950 |
+
"output_type": "stream",
|
951 |
+
"name": "stdout",
|
952 |
+
"text": [
|
953 |
+
"Epoch 1/3\n",
|
954 |
+
"----------\n",
|
955 |
+
"Train loss 0.032615248548951696 accuracy 0.9951367781155015\n",
|
956 |
+
"Val loss 0.03613543838475535 accuracy 0.9941662615459407\n",
|
957 |
+
"Epoch 2/3\n",
|
958 |
+
"----------\n",
|
959 |
+
"Train loss 0.021585255281155413 accuracy 0.9958662613981764\n",
|
960 |
+
"Val loss 0.008615166831007156 accuracy 0.9990277102576568\n",
|
961 |
+
"Epoch 3/3\n",
|
962 |
+
"----------\n",
|
963 |
+
"Train loss 0.003893426973731551 accuracy 0.9993920972644377\n",
|
964 |
+
"Val loss 0.009192386632538158 accuracy 0.9985415653864851\n"
|
965 |
+
]
|
966 |
+
}
|
967 |
+
]
|
968 |
+
},
|
969 |
+
{
|
970 |
+
"cell_type": "code",
|
971 |
+
"source": [
|
972 |
+
"from google.colab import drive\n",
|
973 |
+
"drive.mount('/content/drive')\n",
|
974 |
+
"torch.save(model.state_dict(), '/content/drive/MyDrive/data/weights.pth')"
|
975 |
+
],
|
976 |
+
"metadata": {
|
977 |
+
"colab": {
|
978 |
+
"base_uri": "https://localhost:8080/"
|
979 |
+
},
|
980 |
+
"id": "asNHjpLTZOJQ",
|
981 |
+
"outputId": "bc24d7ab-e05e-451c-dbe4-52328ccf71ac"
|
982 |
+
},
|
983 |
+
"execution_count": 55,
|
984 |
+
"outputs": [
|
985 |
+
{
|
986 |
+
"output_type": "stream",
|
987 |
+
"name": "stdout",
|
988 |
+
"text": [
|
989 |
+
"Mounted at /content/drive\n"
|
990 |
+
]
|
991 |
+
}
|
992 |
+
]
|
993 |
+
},
|
994 |
+
{
|
995 |
+
"cell_type": "code",
|
996 |
+
"source": [
|
997 |
+
"import os\n",
|
998 |
+
"import joblib\n",
|
999 |
+
"from hsml.schema import Schema\n",
|
1000 |
+
"from hsml.model_schema import ModelSchema\n",
|
1001 |
+
"from sklearn.metrics import classification_report\n",
|
1002 |
+
"\n",
|
1003 |
+
"# We will now upload our model to the Hopsworks Model Registry. First get an object for the model registry.\n",
|
1004 |
+
"mr = project.get_model_registry()\n",
|
1005 |
+
" \n",
|
1006 |
+
"# The contents of the directory will be saved to the model registry. Create the dir, first.\n",
|
1007 |
+
"model_dir=\"sentimental_analysis_model\"\n",
|
1008 |
+
"if os.path.isdir(model_dir) == False:\n",
|
1009 |
+
" os.mkdir(model_dir)\n",
|
1010 |
+
"\n",
|
1011 |
+
"# Save both our model and the confusion matrix to 'model_dir', whose contents will be uploaded to the model registry\n",
|
1012 |
+
"joblib.dump(model, model_dir + \"/sentimental_analysis_model.pkl\") \n",
|
1013 |
+
"\n",
|
1014 |
+
"\n",
|
1015 |
+
"# Specify the schema of the model's input/output using the features (X_train) and labels (y_train)\n",
|
1016 |
+
"input_schema = Schema(train_message)\n",
|
1017 |
+
"output_schema = Schema(train_depression)\n",
|
1018 |
+
"model_schema = ModelSchema(input_schema, output_schema)\n",
|
1019 |
+
"\n",
|
1020 |
+
"# Create an entry in the model registry that includes the model's name, desc, metrics\n",
|
1021 |
+
"sentimental_analysis_model = mr.python.create_model(\n",
|
1022 |
+
" name=\"sentimental_analysis_model\", \n",
|
1023 |
+
" model_schema=model_schema,\n",
|
1024 |
+
" description=\"Sentimental Analysis Predictor\"\n",
|
1025 |
+
")\n",
|
1026 |
+
" \n",
|
1027 |
+
"# Upload the model to the model registry, including all files in 'model_dir'\n",
|
1028 |
+
"sentimental_analysis_model.save(model_dir)"
|
1029 |
+
],
|
1030 |
+
"metadata": {
|
1031 |
+
"colab": {
|
1032 |
+
"base_uri": "https://localhost:8080/",
|
1033 |
+
"height": 103,
|
1034 |
+
"referenced_widgets": [
|
1035 |
+
"23633252c1024924905ec679b76afcff",
|
1036 |
+
"c2388f6069984613b88dc84ddb8e4fde",
|
1037 |
+
"49e6c1619fdc4e57baf4d981828fc141",
|
1038 |
+
"67459de96a474b3c89d12c259823fe8f",
|
1039 |
+
"096988fe730241bca5b4647c3f5ac561",
|
1040 |
+
"432ca53539984f6f8d38ff46c3afa42c",
|
1041 |
+
"48d442f8e826410da171ab3c54bee0ee",
|
1042 |
+
"2571df81b38e490b8752309bd485b91e",
|
1043 |
+
"02d2d92f6f754d6a9a6b9ed63d5dbed2",
|
1044 |
+
"918c8791a4cb4fc08f16f49bbd2cd73f",
|
1045 |
+
"3058453f9373468d9f09a5867c834d18"
|
1046 |
+
]
|
1047 |
+
},
|
1048 |
+
"id": "PNbxNGUimwj8",
|
1049 |
+
"outputId": "2e775988-7d2e-46d7-dba7-30896b30f7ac"
|
1050 |
+
},
|
1051 |
+
"execution_count": 56,
|
1052 |
+
"outputs": [
|
1053 |
+
{
|
1054 |
+
"output_type": "stream",
|
1055 |
+
"name": "stdout",
|
1056 |
+
"text": [
|
1057 |
+
"Connected. Call `.close()` to terminate connection gracefully.\n"
|
1058 |
+
]
|
1059 |
+
},
|
1060 |
+
{
|
1061 |
+
"output_type": "display_data",
|
1062 |
+
"data": {
|
1063 |
+
"text/plain": [
|
1064 |
+
" 0%| | 0/6 [00:00<?, ?it/s]"
|
1065 |
+
],
|
1066 |
+
"application/vnd.jupyter.widget-view+json": {
|
1067 |
+
"version_major": 2,
|
1068 |
+
"version_minor": 0,
|
1069 |
+
"model_id": "23633252c1024924905ec679b76afcff"
|
1070 |
+
}
|
1071 |
+
},
|
1072 |
+
"metadata": {}
|
1073 |
+
},
|
1074 |
+
{
|
1075 |
+
"output_type": "stream",
|
1076 |
+
"name": "stdout",
|
1077 |
+
"text": [
|
1078 |
+
"Model created, explore it at https://c.app.hopsworks.ai:443/p/5311/models/sentimental_analysis_model/1\n"
|
1079 |
+
]
|
1080 |
+
},
|
1081 |
+
{
|
1082 |
+
"output_type": "execute_result",
|
1083 |
+
"data": {
|
1084 |
+
"text/plain": [
|
1085 |
+
"Model(name: 'sentimental_analysis_model', version: 1)"
|
1086 |
+
]
|
1087 |
+
},
|
1088 |
+
"metadata": {},
|
1089 |
+
"execution_count": 56
|
1090 |
+
}
|
1091 |
+
]
|
1092 |
+
}
|
1093 |
+
]
|
1094 |
+
}
|