Spaces:
Running
on
Zero
Running
on
Zero
File size: 3,714 Bytes
f04732f fccbf81 f04732f fccbf81 f04732f fccbf81 f04732f 69f9849 fccbf81 69f9849 fccbf81 69f9849 fccbf81 69f9849 fccbf81 2f2072e fccbf81 69f9849 fccbf81 69f9849 fccbf81 f04732f 69f9849 f04732f 3edc738 f04732f 3edc738 f04732f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 |
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer
from threading import Thread
import re
import time
from PIL import Image
import torch
import spaces
tokenizer = AutoTokenizer.from_pretrained(
'qnguyen3/nanoLLaVA',
trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(
'qnguyen3/nanoLLaVA',
torch_dtype=torch.float16,
device_map='auto',
trust_remote_code=True)
model.to("cuda:0")
@spaces.GPU
def bot_streaming(message, history):
chat_history = []
if message["files"]:
image = message["files"][-1]["path"]
else:
for i, hist in enumerate(history):
if type(hist[0])==tuple:
image = hist[0][0]
image_turn = i
if len(history) > 0 and image is not None:
chat_history.append({"role": "user", "content": f'<image>\n{history[1][0]}'})
chat_history.append({"role": "assistant", "content": history[1][1] })
for human, assistant in history[2:]:
chat_history.append({"role": "user", "content": human })
chat_history.append({"role": "assistant", "content": assistant })
chat_history.append({"role": "user", "content": message['text']})
elif len(history) > 0 and image is None:
for human, assistant in history:
chat_history.append({"role": "user", "content": human })
chat_history.append({"role": "assistant", "content": assistant })
chat_history.append({"role": "user", "content": message['text']})
elif len(history) == 0 and image is not None:
chat_history.append({"role": "user", "content": f"<image>\n{message['text']}"})
elif len(history) == 0 and image is None:
chat_history.append({"role": "user", "content": message['text'] })
# if image is None:
# gr.Error("You need to upload an image for LLaVA to work.")
prompt=f"[INST] <image>\n{message['text']} [/INST]"
image = Image.open(image).convert("RGB")
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True)
text_chunks = [tokenizer(chunk).input_ids for chunk in text.split('<image>')]
input_ids = torch.tensor(text_chunks[0] + [-200] + text_chunks[1], dtype=torch.long).unsqueeze(0)
streamer = TextIteratorStreamer(input_ids, **{"skip_special_tokens": True})
image = Image.open(image)
image_tensor = model.process_images([image], model.config).to(dtype=model.dtype)
generation_kwargs = dict(inputs, images=image_tensor, streamer=streamer, max_new_tokens=100)
generated_text = ""
thread = Thread(target=model.generate, kwargs=generation_kwargs)
thread.start()
text_prompt =f"<|im_start|>user\n{message['text']}<|im_end|>"
buffer = ""
for new_text in streamer:
buffer += new_text
generated_text_without_prompt = buffer[len(text_prompt):]
time.sleep(0.04)
yield generated_text_without_prompt
demo = gr.ChatInterface(fn=bot_streaming, title="LLaVA NeXT", examples=[{"text": "What is on the flower?", "files":["./bee.jpg"]},
{"text": "How to make this pastry?", "files":["./baklava.png"]}],
description="Try [LLaVA NeXT](https://huggingface.co/docs/transformers/main/en/model_doc/llava_next) in this demo (more specifically, the [Mistral-7B variant](https://huggingface.co/llava-hf/llava-v1.6-mistral-7b-hf)). Upload an image and start chatting about it, or simply try one of the examples below. If you don't upload an image, you will receive an error.",
stop_btn="Stop Generation", multimodal=True)
demo.launch(debug=True) |