saad noor
commited on
Commit
•
dab2f85
1
Parent(s):
cd5e9c8
init commit
Browse files- .gitignore +1 -0
- 0040da34-25c8-4a5a-a6aa-36733ea3b8eb.png +0 -0
- app.py +262 -0
- e100_img.pt +3 -0
- e50_aug.pt +3 -0
- epoch50hgeq2.pt +3 -0
- raytuneYolo50epoch.pt +3 -0
- requirements.txt +0 -0
.gitignore
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
yoloenv/
|
0040da34-25c8-4a5a-a6aa-36733ea3b8eb.png
ADDED
app.py
ADDED
@@ -0,0 +1,262 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import requests
|
3 |
+
import torch
|
4 |
+
import os
|
5 |
+
from tqdm import tqdm
|
6 |
+
# import wandb
|
7 |
+
from ultralytics import YOLO
|
8 |
+
import cv2
|
9 |
+
import numpy as np
|
10 |
+
import pandas as pd
|
11 |
+
from skimage.transform import resize
|
12 |
+
from skimage import img_as_bool
|
13 |
+
from skimage.morphology import convex_hull_image
|
14 |
+
import json
|
15 |
+
|
16 |
+
# wandb.init(mode='disabled')
|
17 |
+
|
18 |
+
def tableConvexHull(img, masks):
|
19 |
+
mask=np.zeros(masks[0].shape,dtype="bool")
|
20 |
+
for msk in masks:
|
21 |
+
temp=msk.cpu().detach().numpy();
|
22 |
+
chull = convex_hull_image(temp);
|
23 |
+
mask=np.bitwise_or(mask,chull)
|
24 |
+
return mask
|
25 |
+
|
26 |
+
def cls_exists(clss, cls):
|
27 |
+
indices = torch.where(clss==cls)
|
28 |
+
return len(indices[0])>0
|
29 |
+
|
30 |
+
def empty_mask(img):
|
31 |
+
mask = np.zeros(img.shape[:2], dtype="uint8")
|
32 |
+
return np.array(mask, dtype=bool)
|
33 |
+
|
34 |
+
def extract_img_mask(img_model, img, config):
|
35 |
+
res_dict = {
|
36 |
+
'status' : 1
|
37 |
+
}
|
38 |
+
res = get_predictions(img_model, img, config)
|
39 |
+
|
40 |
+
if res['status']==-1:
|
41 |
+
res_dict['status'] = -1
|
42 |
+
|
43 |
+
elif res['status']==0:
|
44 |
+
res_dict['mask']=empty_mask(img)
|
45 |
+
|
46 |
+
else:
|
47 |
+
masks = res['masks']
|
48 |
+
boxes = res['boxes']
|
49 |
+
clss = boxes[:, 5]
|
50 |
+
mask = extract_mask(img, masks, boxes, clss, 0)
|
51 |
+
res_dict['mask'] = mask
|
52 |
+
return res_dict
|
53 |
+
|
54 |
+
def get_predictions(model, img2, config):
|
55 |
+
res_dict = {
|
56 |
+
'status': 1
|
57 |
+
}
|
58 |
+
try:
|
59 |
+
for result in model.predict(source=img2, verbose=False, retina_masks=config['rm'],\
|
60 |
+
imgsz=config['sz'], conf=config['conf'], stream=True,\
|
61 |
+
classes=config['classes']):
|
62 |
+
try:
|
63 |
+
res_dict['masks'] = result.masks.data
|
64 |
+
res_dict['boxes'] = result.boxes.data
|
65 |
+
del result
|
66 |
+
return res_dict
|
67 |
+
except Exception as e:
|
68 |
+
res_dict['status'] = 0
|
69 |
+
return res_dict
|
70 |
+
except:
|
71 |
+
res_dict['status'] = -1
|
72 |
+
return res_dict
|
73 |
+
|
74 |
+
def extract_mask(img, masks, boxes, clss, cls):
|
75 |
+
if not cls_exists(clss, cls):
|
76 |
+
return empty_mask(img)
|
77 |
+
indices = torch.where(clss==cls)
|
78 |
+
c_masks = masks[indices]
|
79 |
+
mask_arr = torch.any(c_masks, dim=0).bool()
|
80 |
+
mask_arr = mask_arr.cpu().detach().numpy()
|
81 |
+
mask = mask_arr
|
82 |
+
return mask
|
83 |
+
|
84 |
+
|
85 |
+
def get_masks(img, model, img_model, flags, configs):
|
86 |
+
response = {
|
87 |
+
'status': 1
|
88 |
+
}
|
89 |
+
ans_masks = []
|
90 |
+
img2 = img
|
91 |
+
|
92 |
+
|
93 |
+
# ***** Getting paragraph and text masks
|
94 |
+
res = get_predictions(model, img2, configs['paratext'])
|
95 |
+
if res['status']==-1:
|
96 |
+
response['status'] = -1
|
97 |
+
return response
|
98 |
+
elif res['status']==0:
|
99 |
+
for i in range(2): ans_masks.append(empty_mask(img))
|
100 |
+
else:
|
101 |
+
masks, boxes = res['masks'], res['boxes']
|
102 |
+
clss = boxes[:, 5]
|
103 |
+
for cls in range(2):
|
104 |
+
mask = extract_mask(img, masks, boxes, clss, cls)
|
105 |
+
ans_masks.append(mask)
|
106 |
+
|
107 |
+
|
108 |
+
# ***** Getting image and table masks
|
109 |
+
res2 = get_predictions(model, img2, configs['imgtab'])
|
110 |
+
if res2['status']==-1:
|
111 |
+
response['status'] = -1
|
112 |
+
return response
|
113 |
+
elif res2['status']==0:
|
114 |
+
for i in range(2): ans_masks.append(empty_mask(img))
|
115 |
+
else:
|
116 |
+
masks, boxes = res2['masks'], res2['boxes']
|
117 |
+
clss = boxes[:, 5]
|
118 |
+
|
119 |
+
if cls_exists(clss, 2):
|
120 |
+
img_res = extract_img_mask(img_model, img, configs['image'])
|
121 |
+
if img_res['status'] == 1:
|
122 |
+
img_mask = img_res['mask']
|
123 |
+
else:
|
124 |
+
response['status'] = -1
|
125 |
+
return response
|
126 |
+
|
127 |
+
else:
|
128 |
+
img_mask = empty_mask(img)
|
129 |
+
ans_masks.append(img_mask)
|
130 |
+
|
131 |
+
if cls_exists(clss, 3):
|
132 |
+
indices = torch.where(clss==3)
|
133 |
+
tbl_mask = tableConvexHull(img, masks[indices])
|
134 |
+
else:
|
135 |
+
tbl_mask = empty_mask(img)
|
136 |
+
ans_masks.append(tbl_mask)
|
137 |
+
|
138 |
+
if not configs['paratext']['rm']:
|
139 |
+
h, w, c = img.shape
|
140 |
+
for i in range(4):
|
141 |
+
ans_masks[i] = img_as_bool(resize(ans_masks[i], (h, w)))
|
142 |
+
|
143 |
+
|
144 |
+
response['masks'] = ans_masks
|
145 |
+
return response
|
146 |
+
|
147 |
+
def overlay(image, mask, color, alpha, resize=None):
|
148 |
+
"""Combines image and its segmentation mask into a single image.
|
149 |
+
https://www.kaggle.com/code/purplejester/showing-samples-with-segmentation-mask-overlay
|
150 |
+
|
151 |
+
Params:
|
152 |
+
image: Training image. np.ndarray,
|
153 |
+
mask: Segmentation mask. np.ndarray,
|
154 |
+
color: Color for segmentation mask rendering. tuple[int, int, int] = (255, 0, 0)
|
155 |
+
alpha: Segmentation mask's transparency. float = 0.5,
|
156 |
+
resize: If provided, both image and its mask are resized before blending them together.
|
157 |
+
tuple[int, int] = (1024, 1024))
|
158 |
+
|
159 |
+
Returns:
|
160 |
+
image_combined: The combined image. np.ndarray
|
161 |
+
|
162 |
+
"""
|
163 |
+
color = color[::-1]
|
164 |
+
colored_mask = np.expand_dims(mask, 0).repeat(3, axis=0)
|
165 |
+
colored_mask = np.moveaxis(colored_mask, 0, -1)
|
166 |
+
masked = np.ma.MaskedArray(image, mask=colored_mask, fill_value=color)
|
167 |
+
image_overlay = masked.filled()
|
168 |
+
|
169 |
+
if resize is not None:
|
170 |
+
image = cv2.resize(image.transpose(1, 2, 0), resize)
|
171 |
+
image_overlay = cv2.resize(image_overlay.transpose(1, 2, 0), resize)
|
172 |
+
|
173 |
+
image_combined = cv2.addWeighted(image, 1 - alpha, image_overlay, alpha, 0)
|
174 |
+
|
175 |
+
return image_combined
|
176 |
+
|
177 |
+
|
178 |
+
|
179 |
+
|
180 |
+
general_model_path = 'e50_aug.pt'
|
181 |
+
image_model_path = 'e100_img.pt'
|
182 |
+
|
183 |
+
general_model = YOLO(general_model_path)
|
184 |
+
image_model = YOLO(image_model_path)
|
185 |
+
|
186 |
+
sample_path = ['0040da34-25c8-4a5a-a6aa-36733ea3b8eb.png']
|
187 |
+
|
188 |
+
flags = {
|
189 |
+
'hist': False,
|
190 |
+
'bz': False
|
191 |
+
}
|
192 |
+
|
193 |
+
|
194 |
+
configs = {}
|
195 |
+
configs['paratext'] = {
|
196 |
+
'sz' : 640,
|
197 |
+
'conf': 0.25,
|
198 |
+
'rm': True,
|
199 |
+
'classes': [0, 1]
|
200 |
+
}
|
201 |
+
configs['imgtab'] = {
|
202 |
+
'sz' : 640,
|
203 |
+
'conf': 0.35,
|
204 |
+
'rm': True,
|
205 |
+
'classes': [2, 3]
|
206 |
+
}
|
207 |
+
configs['image'] = {
|
208 |
+
'sz' : 640,
|
209 |
+
'conf': 0.35,
|
210 |
+
'rm': True,
|
211 |
+
'classes': [0]
|
212 |
+
}
|
213 |
+
|
214 |
+
def evaluate(img_path, model=general_model, img_model=image_model,\
|
215 |
+
configs=configs, flags=flags):
|
216 |
+
print('starting')
|
217 |
+
img = cv2.imread(img_path)
|
218 |
+
res = get_masks(img, general_model, image_model, flags, configs)
|
219 |
+
if res['status']==-1:
|
220 |
+
for idx in configs.keys():
|
221 |
+
configs[idx]['rm'] = False
|
222 |
+
return evaluate(img, model, img_model, flags, configs)
|
223 |
+
else:
|
224 |
+
masks = res['masks']
|
225 |
+
|
226 |
+
color_map = {
|
227 |
+
0 : (255, 0, 0),
|
228 |
+
1 : (0, 255, 0),
|
229 |
+
2 : (0, 0, 255),
|
230 |
+
3 : (255, 255, 0),
|
231 |
+
}
|
232 |
+
for i, mask in enumerate(masks):
|
233 |
+
img = overlay(image=img, mask=mask, color=color_map[i], alpha=0.4)
|
234 |
+
print('finishing')
|
235 |
+
return img
|
236 |
+
|
237 |
+
# output = evaluate(img_path=sample_path, model=general_model, img_model=image_model,\
|
238 |
+
# configs=configs, flags=flags)
|
239 |
+
|
240 |
+
|
241 |
+
inputs_img = [
|
242 |
+
gr.components.Video(type="filepath", label="Input Video"),
|
243 |
+
|
244 |
+
]
|
245 |
+
outputs_img = [
|
246 |
+
gr.components.Image(type="numpy", label="Output Image"),
|
247 |
+
]
|
248 |
+
|
249 |
+
inputs_image = [
|
250 |
+
gr.components.Image(type="filepath", label="Input Image"),
|
251 |
+
]
|
252 |
+
outputs_image = [
|
253 |
+
gr.components.Image(type="numpy", label="Output Image"),
|
254 |
+
]
|
255 |
+
interface_image = gr.Interface(
|
256 |
+
fn=evaluate,
|
257 |
+
inputs=inputs_image,
|
258 |
+
outputs=outputs_image,
|
259 |
+
title="Document Layout Segmentor",
|
260 |
+
examples=sample_path,
|
261 |
+
cache_examples=True,
|
262 |
+
)
|
e100_img.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7424265a528fd1a2f741bb48a3586e69496de55f14e4a4c5ba867e83c2d159f8
|
3 |
+
size 54786656
|
e50_aug.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:12dba7a7156750342fb35ef2305a0bffa31615258aced63811e9220990f1f0a3
|
3 |
+
size 54792992
|
epoch50hgeq2.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:40c00f2b620f539f9054bd17f4fbda064782aa64c089f1c366a607189a112acf
|
3 |
+
size 218670661
|
raytuneYolo50epoch.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:971d22657b3a263a44150bbcb9a2a0726e15c3460a0f6a4810ae949c623bc5fa
|
3 |
+
size 54793056
|
requirements.txt
ADDED
Binary file (2.46 kB). View file
|
|