Dileep7729
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -1,35 +1,39 @@
|
|
1 |
-
import
|
2 |
-
import requests
|
3 |
-
from PIL import Image
|
4 |
from transformers import BlipProcessor, BlipForConditionalGeneration
|
|
|
5 |
|
6 |
-
# Load
|
7 |
-
|
8 |
-
model = BlipForConditionalGeneration.from_pretrained("quadranttechnologies/Imageclassification")
|
9 |
|
10 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
def generate_caption(image):
|
12 |
try:
|
13 |
-
# Convert the image into the required format for the model
|
14 |
inputs = processor(image, return_tensors="pt")
|
15 |
-
|
16 |
-
# Generate caption
|
17 |
outputs = model.generate(**inputs)
|
18 |
caption = processor.decode(outputs[0], skip_special_tokens=True)
|
19 |
return caption
|
20 |
except Exception as e:
|
21 |
return f"Error generating caption: {e}"
|
22 |
|
23 |
-
# Set up Gradio interface for image upload and caption generation
|
24 |
interface = gr.Interface(
|
25 |
fn=generate_caption,
|
26 |
-
inputs=gr.Image(type="pil"),
|
27 |
-
outputs="text",
|
28 |
title="Image Captioning Model",
|
29 |
description="Upload an image to receive a caption generated by the model."
|
30 |
)
|
31 |
|
32 |
-
# Launch the Gradio app
|
33 |
if __name__ == "__main__":
|
34 |
-
interface.launch(share=True)
|
|
|
35 |
|
|
|
1 |
+
import os
|
|
|
|
|
2 |
from transformers import BlipProcessor, BlipForConditionalGeneration
|
3 |
+
import gradio as gr
|
4 |
|
5 |
+
# Load the token from the environment
|
6 |
+
HUGGINGFACE_TOKEN = os.getenv("HUGGINGFACE_TOKEN")
|
|
|
7 |
|
8 |
+
# Load the model and processor with the token
|
9 |
+
processor = BlipProcessor.from_pretrained(
|
10 |
+
"quadranttechnologies/Imageclassification",
|
11 |
+
use_auth_token=HUGGINGFACE_TOKEN
|
12 |
+
)
|
13 |
+
model = BlipForConditionalGeneration.from_pretrained(
|
14 |
+
"quadranttechnologies/Imageclassification",
|
15 |
+
use_auth_token=HUGGINGFACE_TOKEN
|
16 |
+
)
|
17 |
+
|
18 |
+
# Define your Gradio interface and logic as before
|
19 |
def generate_caption(image):
|
20 |
try:
|
|
|
21 |
inputs = processor(image, return_tensors="pt")
|
|
|
|
|
22 |
outputs = model.generate(**inputs)
|
23 |
caption = processor.decode(outputs[0], skip_special_tokens=True)
|
24 |
return caption
|
25 |
except Exception as e:
|
26 |
return f"Error generating caption: {e}"
|
27 |
|
|
|
28 |
interface = gr.Interface(
|
29 |
fn=generate_caption,
|
30 |
+
inputs=gr.Image(type="pil"),
|
31 |
+
outputs="text",
|
32 |
title="Image Captioning Model",
|
33 |
description="Upload an image to receive a caption generated by the model."
|
34 |
)
|
35 |
|
|
|
36 |
if __name__ == "__main__":
|
37 |
+
interface.launch(share=True)
|
38 |
+
|
39 |
|