Dileep7729 commited on
Commit
b1385de
·
verified ·
1 Parent(s): 8154c96

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +19 -15
app.py CHANGED
@@ -1,35 +1,39 @@
1
- import gradio as gr
2
- import requests
3
- from PIL import Image
4
  from transformers import BlipProcessor, BlipForConditionalGeneration
 
5
 
6
- # Load your model and processor
7
- processor = BlipProcessor.from_pretrained("quadranttechnologies/Imageclassification")
8
- model = BlipForConditionalGeneration.from_pretrained("quadranttechnologies/Imageclassification")
9
 
10
- # Define a function to generate captions for the uploaded image
 
 
 
 
 
 
 
 
 
 
11
  def generate_caption(image):
12
  try:
13
- # Convert the image into the required format for the model
14
  inputs = processor(image, return_tensors="pt")
15
-
16
- # Generate caption
17
  outputs = model.generate(**inputs)
18
  caption = processor.decode(outputs[0], skip_special_tokens=True)
19
  return caption
20
  except Exception as e:
21
  return f"Error generating caption: {e}"
22
 
23
- # Set up Gradio interface for image upload and caption generation
24
  interface = gr.Interface(
25
  fn=generate_caption,
26
- inputs=gr.Image(type="pil"), # Accepts uploaded images
27
- outputs="text", # Displays the caption as text
28
  title="Image Captioning Model",
29
  description="Upload an image to receive a caption generated by the model."
30
  )
31
 
32
- # Launch the Gradio app
33
  if __name__ == "__main__":
34
- interface.launch(share=True) # Set share=True to enable public link if needed
 
35
 
 
1
+ import os
 
 
2
  from transformers import BlipProcessor, BlipForConditionalGeneration
3
+ import gradio as gr
4
 
5
+ # Load the token from the environment
6
+ HUGGINGFACE_TOKEN = os.getenv("HUGGINGFACE_TOKEN")
 
7
 
8
+ # Load the model and processor with the token
9
+ processor = BlipProcessor.from_pretrained(
10
+ "quadranttechnologies/Imageclassification",
11
+ use_auth_token=HUGGINGFACE_TOKEN
12
+ )
13
+ model = BlipForConditionalGeneration.from_pretrained(
14
+ "quadranttechnologies/Imageclassification",
15
+ use_auth_token=HUGGINGFACE_TOKEN
16
+ )
17
+
18
+ # Define your Gradio interface and logic as before
19
  def generate_caption(image):
20
  try:
 
21
  inputs = processor(image, return_tensors="pt")
 
 
22
  outputs = model.generate(**inputs)
23
  caption = processor.decode(outputs[0], skip_special_tokens=True)
24
  return caption
25
  except Exception as e:
26
  return f"Error generating caption: {e}"
27
 
 
28
  interface = gr.Interface(
29
  fn=generate_caption,
30
+ inputs=gr.Image(type="pil"),
31
+ outputs="text",
32
  title="Image Captioning Model",
33
  description="Upload an image to receive a caption generated by the model."
34
  )
35
 
 
36
  if __name__ == "__main__":
37
+ interface.launch(share=True)
38
+
39