Spaces:
Running
Running
Commit
·
d155ff4
1
Parent(s):
8316f1a
added gemma
Browse files
app.py
CHANGED
@@ -7,15 +7,33 @@ import plotly.express as px
|
|
7 |
from config import other_info_dict
|
8 |
from utils import *
|
9 |
# %%
|
10 |
-
st.title("Microsoft Phi-2
|
11 |
# st.image('model_card.png', caption='Hugging face description', use_column_width=True)
|
12 |
-
st.write("""
|
13 |
-
Microsoft Phi-2 (https://huggingface.co/microsoft/phi-2) is a Transformer model with 2.7 billion parameters. Performance on benchmarks for common sense, language understanding, and logical reasoning is nearly state-of-the-art among models with less than 13 billion parameters. Unlike typical Large Language Models (LLM), Phi-2 has not been fine-tuned through reinforcement learning from human feedback.""")
|
14 |
|
15 |
import urllib.request
|
16 |
import os
|
17 |
-
prefix_post_processing = os.environ["POST_PROCESSING_JSON"]
|
18 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
|
20 |
st.header('Evaluation dataset')
|
21 |
st.write(other_info_dict['data_description'])
|
@@ -317,9 +335,6 @@ merged_t_fair_df = pd.concat(t_fair_dfs_list, axis=0)
|
|
317 |
|
318 |
|
319 |
fig_fair = px.scatter(merged_t_fair_df, x='Category', y='Estimate', error_y='Diff upper', error_y_minus='Diff lower', color='Prompt', symbol='Prompt')
|
320 |
-
|
321 |
-
# fig_fair = None
|
322 |
-
|
323 |
fig_fair.update_layout(yaxis_title="Performance in %")
|
324 |
|
325 |
st.plotly_chart(fig_fair, theme="streamlit", use_container_width=True)
|
|
|
7 |
from config import other_info_dict
|
8 |
from utils import *
|
9 |
# %%
|
10 |
+
st.title("LLM assessments: Microsoft's Phi-2 and Google's Gemma-7b")
|
11 |
# st.image('model_card.png', caption='Hugging face description', use_column_width=True)
|
|
|
|
|
12 |
|
13 |
import urllib.request
|
14 |
import os
|
|
|
15 |
|
16 |
+
model_select = st.selectbox(
|
17 |
+
'Select the model:',
|
18 |
+
[
|
19 |
+
"Microsoft's Phi-2",
|
20 |
+
"Google's Gemma"
|
21 |
+
])
|
22 |
+
|
23 |
+
if model_select == "Microsoft's Phi-2":
|
24 |
+
prefix_post_processing = os.environ["POST_PROCESSING_JSON"]
|
25 |
+
st.write("""
|
26 |
+
Microsoft's Phi-2 (https://huggingface.co/microsoft/phi-2) is a Transformer model with 2.7 billion parameters. Performance on benchmarks for common sense, language understanding, and logical reasoning is nearly state-of-the-art among models with less than 13 billion parameters. Unlike typical Large Language Models (LLM), Phi-2 has not been fine-tuned through reinforcement learning from human feedback.""")
|
27 |
+
|
28 |
+
else:
|
29 |
+
prefix_post_processing = os.environ["POST_PROCESSING_JSON_GEMMA"]
|
30 |
+
st.write("""
|
31 |
+
Google Gemma-7b (https://huggingface.co/google/gemma-7b) is a Large Language Models (LLM) with 8.54 billion parameters. As per the https://storage.googleapis.com/deepmind-media/gemma/gemma-report.pdf, Gemma-7b performs well in language understanding, reasoning, and safety tasks. This model is one of state of the art open models built based on similar technologies that were used to create Google's Gemini models.""")
|
32 |
+
|
33 |
+
|
34 |
+
|
35 |
+
|
36 |
+
# prefix_post_processing = os.environ["POST_PROCESSING_JSON"]
|
37 |
|
38 |
st.header('Evaluation dataset')
|
39 |
st.write(other_info_dict['data_description'])
|
|
|
335 |
|
336 |
|
337 |
fig_fair = px.scatter(merged_t_fair_df, x='Category', y='Estimate', error_y='Diff upper', error_y_minus='Diff lower', color='Prompt', symbol='Prompt')
|
|
|
|
|
|
|
338 |
fig_fair.update_layout(yaxis_title="Performance in %")
|
339 |
|
340 |
st.plotly_chart(fig_fair, theme="streamlit", use_container_width=True)
|