mmahesh873 commited on
Commit
d155ff4
·
1 Parent(s): 8316f1a

added gemma

Browse files
Files changed (1) hide show
  1. app.py +22 -7
app.py CHANGED
@@ -7,15 +7,33 @@ import plotly.express as px
7
  from config import other_info_dict
8
  from utils import *
9
  # %%
10
- st.title("Microsoft Phi-2 LLM assessment")
11
  # st.image('model_card.png', caption='Hugging face description', use_column_width=True)
12
- st.write("""
13
- Microsoft Phi-2 (https://huggingface.co/microsoft/phi-2) is a Transformer model with 2.7 billion parameters. Performance on benchmarks for common sense, language understanding, and logical reasoning is nearly state-of-the-art among models with less than 13 billion parameters. Unlike typical Large Language Models (LLM), Phi-2 has not been fine-tuned through reinforcement learning from human feedback.""")
14
 
15
  import urllib.request
16
  import os
17
- prefix_post_processing = os.environ["POST_PROCESSING_JSON"]
18
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
19
 
20
  st.header('Evaluation dataset')
21
  st.write(other_info_dict['data_description'])
@@ -317,9 +335,6 @@ merged_t_fair_df = pd.concat(t_fair_dfs_list, axis=0)
317
 
318
 
319
  fig_fair = px.scatter(merged_t_fair_df, x='Category', y='Estimate', error_y='Diff upper', error_y_minus='Diff lower', color='Prompt', symbol='Prompt')
320
-
321
- # fig_fair = None
322
-
323
  fig_fair.update_layout(yaxis_title="Performance in %")
324
 
325
  st.plotly_chart(fig_fair, theme="streamlit", use_container_width=True)
 
7
  from config import other_info_dict
8
  from utils import *
9
  # %%
10
+ st.title("LLM assessments: Microsoft's Phi-2 and Google's Gemma-7b")
11
  # st.image('model_card.png', caption='Hugging face description', use_column_width=True)
 
 
12
 
13
  import urllib.request
14
  import os
 
15
 
16
+ model_select = st.selectbox(
17
+ 'Select the model:',
18
+ [
19
+ "Microsoft's Phi-2",
20
+ "Google's Gemma"
21
+ ])
22
+
23
+ if model_select == "Microsoft's Phi-2":
24
+ prefix_post_processing = os.environ["POST_PROCESSING_JSON"]
25
+ st.write("""
26
+ Microsoft's Phi-2 (https://huggingface.co/microsoft/phi-2) is a Transformer model with 2.7 billion parameters. Performance on benchmarks for common sense, language understanding, and logical reasoning is nearly state-of-the-art among models with less than 13 billion parameters. Unlike typical Large Language Models (LLM), Phi-2 has not been fine-tuned through reinforcement learning from human feedback.""")
27
+
28
+ else:
29
+ prefix_post_processing = os.environ["POST_PROCESSING_JSON_GEMMA"]
30
+ st.write("""
31
+ Google Gemma-7b (https://huggingface.co/google/gemma-7b) is a Large Language Models (LLM) with 8.54 billion parameters. As per the https://storage.googleapis.com/deepmind-media/gemma/gemma-report.pdf, Gemma-7b performs well in language understanding, reasoning, and safety tasks. This model is one of state of the art open models built based on similar technologies that were used to create Google's Gemini models.""")
32
+
33
+
34
+
35
+
36
+ # prefix_post_processing = os.environ["POST_PROCESSING_JSON"]
37
 
38
  st.header('Evaluation dataset')
39
  st.write(other_info_dict['data_description'])
 
335
 
336
 
337
  fig_fair = px.scatter(merged_t_fair_df, x='Category', y='Estimate', error_y='Diff upper', error_y_minus='Diff lower', color='Prompt', symbol='Prompt')
 
 
 
338
  fig_fair.update_layout(yaxis_title="Performance in %")
339
 
340
  st.plotly_chart(fig_fair, theme="streamlit", use_container_width=True)