inie2003's picture
added major tom NA to interactive frontend
713c9c7 verified
import streamlit as st
from helper import (
load_dataset, search, get_file_paths,
get_cordinates, get_images_from_s3_to_display,
get_images_with_bounding_boxes_from_s3, load_dataset_with_limit
)
import os
import time
# Load environment variables
AWS_ACCESS_KEY_ID = os.getenv("AWS_ACCESS_KEY_ID")
AWS_SECRET_ACCESS_KEY = os.getenv("AWS_SECRET_ACCESS_KEY")
# Predefined list of datasets
datasets = ["MajorTom-Germany", "MajorTom-Netherlands","MajorTom-North-America", "MajorTom-Europe","WayveScenes"]
folder_path_dict = {
"WayveScenes": "",
"MajorTom-Germany": "MajorTOM-DE/",
"MajorTom-Netherlands": "MajorTOM-NL/",
"MajorTom-Europe": "MajorTom-Europe/",
"MajorTom-North-America" : "MajorTom-NA_66b587ece7b433ff03455227_66b589a3c70d86c8306cdf86_85f3b0d0/",
"MajorTom-UK" :""
}
description = {
"WayveScenes": "A large-scale dataset featuring diverse urban driving scenes, captured from vehicles to advance AI perception and navigation in complex environments.",
"MajorTom-Germany": "A geospatial dataset containing satellite imagery from across Germany, designed for tasks like land-use classification, environmental monitoring, and earth observation analytics.",
"MajorTom-Netherlands": "A geospatial dataset containing satellite imagery from across Netherlands, designed for tasks like land-use classification, environmental monitoring, and earth observation analytics.",
"MajorTom-UK" :"A geospatial dataset containing satellite imagery from across the United Kingdom, designed for tasks like land-use classification, environmental monitoring, and earth observation analytics.",
"MajorTom-North-America" :"A geospatial dataset containing satellite imagery from across Europe, designed for tasks like land-use classification, environmental monitoring, and earth observation analytics.",
"MajorTom-Europe" :"A geospatial dataset containing satellite imagery from across Europe, designed for tasks like land-use classification, environmental monitoring, and earth observation analytics."
}
selection = {
'WayveScenes': [1, 10], #Is there problem?
"MajorTom-Germany": [1, 1],
"MajorTom-Netherlands": [1,1],
"MajorTom-UK": [1,1],
"MajorTom-North-America": [1,4],
"MajorTom-Europe": [1,19]
}
example_queries = {
'WayveScenes': "Parking Signs, Pedestrian Crossing, Traffic Light (Red, Green, Orange)",
"MajorTom-Germany": "Airports, Golf Courses, Wind Mills, Solar Panels ",
"MajorTom-Netherlands": "Airports, Golf Courses, Wind Mills, Solar Panels ",
"MajorTom-UK": "Airports, Golf Courses, Wind Mills, Solar Panels ",
"MajorTom-Europe": "Airports, Golf Courses, Wind Mills, Solar Panels ",
"MajorTom-North-America": "Airports, Golf Courses, Wind Mills, Solar Panels "
}
# AWS S3 bucket name
bucket_name = "datasets-quasara-io"
# Streamlit App
def main():
# Initialize session state variables if not already initialized
if 'search_in_small_objects' not in st.session_state:
st.session_state.search_in_small_objects = False
if 'dataset_number' not in st.session_state:
st.session_state.dataset_number = 1
if 'df' not in st.session_state:
st.session_state.df = None
st.title("Semantic Search and Image Display")
# Select dataset from dropdown
dataset_name = st.selectbox("Select Dataset", datasets)
st.session_state.df = None
#For Loading from Box
folder_path = folder_path_dict[dataset_name]
st.caption(description[dataset_name])
if st.checkbox("Enable Small Object Search", value=st.session_state.search_in_small_objects):
st.session_state.search_in_small_objects = True
st.text("Small Object Search Enabled")
st.session_state.dataset_number = st.selectbox("Select Subset of Data", list(range(1, selection[dataset_name][1] + 1)))
st.session_state.df = None
st.text(f"You have selected Split Dataset {st.session_state.dataset_number}")
else:
st.session_state.search_in_small_objects = False
st.text("Small Object Search Disabled")
st.session_state.dataset_number = st.selectbox("Select Subset of Data", list(range(1, selection[dataset_name][0] + 1)))
st.session_state.df = None
st.text(f"You have selected Main Dataset {st.session_state.dataset_number}")
df, total_rows = load_dataset_with_limit(dataset_name, st.session_state.dataset_number, st.session_state.search_in_small_objects, limit=1)
dataset_limit = st.slider("Size of Dataset to be searched from", min_value=0, max_value=min(total_rows, 80000), value=int(min(total_rows, 80000)/2))
st.text(f'The smaller the dataset the faster the search will work.')
# Load dataset with limit only if not already loaded
try:
loading_dataset_text = st.empty()
loading_dataset_text.text("Loading Dataset...")
loading_dataset_bar = st.progress(0)
# Simulate dataset loading progress
for i in range(0, 100, 25):
time.sleep(0.2) # Simulate work being done
loading_dataset_bar.progress(i + 25)
# Load dataset
df, total_rows = load_dataset_with_limit(dataset_name, st.session_state.dataset_number, st.session_state.search_in_small_objects, limit=dataset_limit)
# Store loaded dataset in session state
st.session_state.df = df
loading_dataset_bar.progress(100)
loading_dataset_text.text("Dataset loaded successfully!")
st.success(f"Dataset loaded successfully with {len(df)} rows.")
except Exception as e:
st.error(f"Failed to load dataset: {e}")
# Input search query
query = st.text_input("Enter your search query")
st.text(f"Example Queries for your Dataset: {example_queries[dataset_name]}")
# Number of results to display
limit = st.number_input("Number of results to display", min_value=1, max_value=10, value=10)
# Search button
if st.button("Search"):
# Validate input
if not query:
st.warning("Please enter a search query.")
else:
try:
# Progress bar for search
search_loading_text = st.empty()
search_loading_text.text("Searching...")
search_progress_bar = st.progress(0)
# Perform search on the loaded dataset from session state
df = st.session_state.df
if st.session_state.search_in_small_objects:
results = search(query, df, limit)
top_k_paths = get_file_paths(df, results)
top_k_cordinates = get_cordinates(df, results)
search_type = 'Splits'
else:
# Normal Search
results = search(query, df, limit)
top_k_paths = get_file_paths(df, results)
search_type = 'Main'
# Complete the search progress
search_progress_bar.progress(100)
search_loading_text.text(f"Search completed among {dataset_limit} rows for {dataset_name} in {search_type} {st.session_state.dataset_number}")
# Load Images with Bounding Boxes if applicable
if st.session_state.search_in_small_objects and top_k_paths and top_k_cordinates:
get_images_with_bounding_boxes_from_s3(bucket_name, top_k_paths, top_k_cordinates, AWS_ACCESS_KEY_ID, AWS_SECRET_ACCESS_KEY, folder_path)
elif not st.session_state.search_in_small_objects and top_k_paths:
st.write(f"Displaying top {len(top_k_paths)} results for query '{query}':")
get_images_from_s3_to_display(bucket_name, top_k_paths, AWS_ACCESS_KEY_ID, AWS_SECRET_ACCESS_KEY, folder_path)
else:
st.write("No results found.")
except Exception as e:
st.error(f"Search failed: {e}")
if __name__ == "__main__":
main()