Spaces:
Running
on
Zero
Running
on
Zero
File size: 1,010 Bytes
2680cbd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 |
import torch
def eval_depth(pred, target):
assert pred.shape == target.shape
thresh = torch.max((target / pred), (pred / target))
d1 = torch.sum(thresh < 1.25).float() / len(thresh)
d2 = torch.sum(thresh < 1.25 ** 2).float() / len(thresh)
d3 = torch.sum(thresh < 1.25 ** 3).float() / len(thresh)
diff = pred - target
diff_log = torch.log(pred) - torch.log(target)
abs_rel = torch.mean(torch.abs(diff) / target)
sq_rel = torch.mean(torch.pow(diff, 2) / target)
rmse = torch.sqrt(torch.mean(torch.pow(diff, 2)))
rmse_log = torch.sqrt(torch.mean(torch.pow(diff_log , 2)))
log10 = torch.mean(torch.abs(torch.log10(pred) - torch.log10(target)))
silog = torch.sqrt(torch.pow(diff_log, 2).mean() - 0.5 * torch.pow(diff_log.mean(), 2))
return {'d1': d1.item(), 'd2': d2.item(), 'd3': d3.item(), 'abs_rel': abs_rel.item(), 'sq_rel': sq_rel.item(),
'rmse': rmse.item(), 'rmse_log': rmse_log.item(), 'log10':log10.item(), 'silog':silog.item()} |