import math import torch import torch.nn as nn import torch.nn.functional as F from model.deep_lab_model.sync_batchnorm.batchnorm import SynchronizedBatchNorm2d class _ASPPModule(nn.Module): def __init__(self, inplanes, planes, kernel_size, padding, dilation, BatchNorm): super(_ASPPModule, self).__init__() self.atrous_conv = nn.Conv2d(inplanes, planes, kernel_size=kernel_size, stride=1, padding=padding, dilation=dilation, bias=False) self.bn = BatchNorm(planes) self.relu = nn.ReLU() self._init_weight() def forward(self, x): x = self.atrous_conv(x) x = self.bn(x) return self.relu(x) def _init_weight(self): for m in self.modules(): if isinstance(m, nn.Conv2d): torch.nn.init.kaiming_normal_(m.weight) elif isinstance(m, SynchronizedBatchNorm2d): m.weight.data.fill_(1) m.bias.data.zero_() elif isinstance(m, nn.BatchNorm2d): m.weight.data.fill_(1) m.bias.data.zero_() class ASPP(nn.Module): def __init__(self, backbone, output_stride, BatchNorm): super(ASPP, self).__init__() if backbone == 'drn': inplanes = 512 elif backbone == 'mobilenet': inplanes = 320 else: inplanes = 2048 if output_stride == 16: dilations = [1, 6, 12, 18] elif output_stride == 8: dilations = [1, 12, 24, 36] else: raise NotImplementedError self.aspp1 = _ASPPModule(inplanes, 256, 1, padding=0, dilation=dilations[0], BatchNorm=BatchNorm) self.aspp2 = _ASPPModule(inplanes, 256, 3, padding=dilations[1], dilation=dilations[1], BatchNorm=BatchNorm) self.aspp3 = _ASPPModule(inplanes, 256, 3, padding=dilations[2], dilation=dilations[2], BatchNorm=BatchNorm) self.aspp4 = _ASPPModule(inplanes, 256, 3, padding=dilations[3], dilation=dilations[3], BatchNorm=BatchNorm) self.global_avg_pool = nn.Sequential(nn.AdaptiveAvgPool2d((1, 1)), nn.Conv2d(inplanes, 256, 1, stride=1, bias=False), BatchNorm(256), nn.ReLU()) self.conv1 = nn.Conv2d(1280, 256, 1, bias=False) self.bn1 = BatchNorm(256) self.relu = nn.ReLU() self.dropout = nn.Dropout(0.5) self._init_weight() def forward(self, x): x1 = self.aspp1(x) x2 = self.aspp2(x) x3 = self.aspp3(x) x4 = self.aspp4(x) x5 = self.global_avg_pool(x) x5 = F.interpolate(x5, size=x4.size()[2:], mode='bilinear', align_corners=True) x = torch.cat((x1, x2, x3, x4, x5), dim=1) x = self.conv1(x) x = self.bn1(x) x = self.relu(x) return self.dropout(x) def _init_weight(self): for m in self.modules(): if isinstance(m, nn.Conv2d): # n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels # m.weight.data.normal_(0, math.sqrt(2. / n)) torch.nn.init.kaiming_normal_(m.weight) elif isinstance(m, SynchronizedBatchNorm2d): m.weight.data.fill_(1) m.bias.data.zero_() elif isinstance(m, nn.BatchNorm2d): m.weight.data.fill_(1) m.bias.data.zero_() def build_aspp(backbone, output_stride, BatchNorm): return ASPP(backbone, output_stride, BatchNorm)