import gradio as gr def predict_emotion(text): inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True, max_length=128) outputs = model(**inputs) prediction = outputs.logits.argmax(-1).item() return dataset["train"].features["label"].int2str(prediction) interface = gr.Interface(fn=predict_emotion, inputs="text", outputs="label", title="Emotion Classifier") interface.launch(share=False)