from datasets import load_dataset from transformers import AutoTokenizer from transformers import AutoModelForSequenceClassification, TrainingArguments, Trainer dataset = load_dataset("emotion") tokenizer = AutoTokenizer.from_pretrained("distilbert-base-uncased") def tokenize_function(examples): return tokenizer(examples["text"], padding="max_length", truncation=True, max_length=128) tokenized_datasets = dataset.map(tokenize_function, batched=True) model = AutoModelForSequenceClassification.from_pretrained("distilbert-base-uncased", num_labels=6) training_args = TrainingArguments( output_dir="./results", num_train_epochs=1, # Reduce epochs for faster training per_device_train_batch_size=8, # Smaller batch size to fit CPU logging_dir="./logs", ) trainer = Trainer( model=model, args=training_args, train_dataset=tokenized_datasets["train"], eval_dataset=tokenized_datasets["validation"] ) trainer.train()